Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Musk Ox Population Decline Due to Climate, Not Humans, Study Finds

09.03.2010
A team of scientists has discovered that the drastic decline in Arctic musk ox populations that began roughly 12,000 years ago was due to a warming climate rather than to human hunting.

"This is the first study to use ancient musk ox DNA collected from across the animal's former geographic range to test for human impacts on musk ox populations," said Beth Shapiro, the Shaffer Career Development assistant professor of biology at Penn State University and one of the team's leaders.

"We found that, although human and musk ox populations overlapped in many regions across the globe, humans probably were not responsible for the decline and eventual extinction of musk oxen across much of their former range." The team's findings will be published in the 8 March 2010 issue of the journal Proceedings of the National Academy of Sciences.

Musk oxen once were plentiful across the entire Northern Hemisphere, but they now exist almost solely in Greenland and number only about 80,000 to 125,000. According to the researchers, musk oxen are not the only animals to suffer during the late Pleistocene Epoch. "The late Pleistocene was marked by rapid environmental change as well as the beginning of the spread of humans across the Northern Hemisphere," said Shapiro. "During that time several animals became extinct, including mammoths and woolly rhinoceroses, while others, including horses, caribou, and bison, survived into the present. The reasons for these drastically different survival patterns have been debated widely, with some scientists claiming that the extinctions were due largely to human hunting. Musk oxen provide a unique opportunity to study this question because they suffered from a decline in their population that coincided with the Pleistocene extinctions, yet they still exist today, which allows us to compare the genetic diversity of today's individuals with those individuals that lived up to 60,000 years ago."

To conduct their research, the team collected musk ox bones and other remains from animals that lived during different times — up to 60,000 years ago — and from animals that lived across the species' former range. From these remains, the scientists isolated and analyzed the mitochondrial DNA, which is useful for studying ancient population dynamics due to its rapid rate of evolutionary change. The scientists also isolated and analyzed the mitochondrial DNA of musk oxen that are alive today. They then used a Bayesian statistical approach to estimate how the amount of genetic diversity of the musk oxen populations changed through time.

"Over the past decade, ancient DNA studies have matured, moving away from simply identifying animals to actually giving us insights into the population size and dynamics of animals, stretching back over the last 100,000 years," said Tom Gilbert, an associate professor at the University of Copenhagen in Denmark and another of the team's leaders. "Thanks to significant computational developments made by colleagues of ours, we have the fantastic opportunity to watch what happened to the ancient populations. When did they increase, or decrease, and at what rate?" he said.

Scientists believe that a reduction in genetic diversity of an animal's population can reflect a decrease in the size of the population. By estimating when the genetic diversity of musk oxen began to decline, the team was able to test whether the decline was due to the arrival of humans in a particular region or to some other effect. The scientists found that the genetic diversity of the musk ox was much higher during the Pleistocene than it is today. They also found that the genetic diversity of the species increased and decreased frequently over the past 65,000 years.

"The periods of growth and decline observed in the musk ox populations in this study are considerably different from those that have been reconstructed previously for musk oxen or for other species, such as bison and mammoths," said Shapiro. "While musk oxen experienced a significant population decline nearly 65,000 years ago, mammoths first began to decline only around 48,000 years ago. Bison populations remained stable until around 35,000 years ago — a period during which musk ox populations actually were growing. As we get a better idea of the overall picture of megafaunal dynamics in the Arctic, it is becoming clear that each species is following its own population trajectory. This is a strong argument that it is changes in habitat that are driving these population dynamics, and not a single factor such as the introduction of human hunters."

Shapiro continued, "We know from historical data that musk oxen are sensitive to changes in the Arctic environment. While we cannot confirm exactly what climate factors are driving the changes we observe in musk oxen over the last 65,000 years, we can say with confidence that humans are not causing local extinctions. In Greenland, for example, humans and musk oxen arrived and began their expansion at the same time."

According to Gilbert, "We wonder how the current climatic instability will effect the survival of musk oxen in the near future. There's a lot in the news about the plight of polar bears, but musk ox may be similarly at risk."

This research was funded, in part, by Forsknings-og Innovationsstyrelsen and the Marie Curie Actions "GeneTime."

[ Sara LaJeunesse ]
CONTACTS:
Beth Shapiro: bus11@psu.edu, +1 (814) 863-9178
Barbara Kennedy (PIO): science@psu.edu, +1 (814) 863-4682

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>