Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Music Training Has Biological Impact on Aging Process

31.01.2012
Aging-related hearing loss is not set in stone, study finds
Age-related delays in neural timing are not inevitable and can be avoided or offset with musical training, according to a new study from Northwestern University. The study is the first to provide biological evidence that lifelong musical experience has an impact on the aging process.

Measuring the automatic brain responses of younger and older musicians and non-musicians to speech sounds, researchers in the Auditory Neuroscience Laboratory discovered that older musicians had a distinct neural timing advantage.

“The older musicians not only outperformed their older non-musician counterparts, they encoded the sound stimuli as quickly and accurately as the younger non-musicians,” said Northwestern neuroscientist Nina Kraus. “This reinforces the idea that how we actively experience sound over the course of our lives has a profound effect on how our nervous system functions.”

Kraus, professor of communication sciences in the School of Communication and professor of neurobiology and physiology in the Weinberg College of Arts and Sciences, is co-author of “Musical experience offsets age-related delays in neural timing” published online in the journal “Neurobiology of Aging.”

“These are very interesting and important findings,” said Don Caspary, a nationally known researcher on age-related hearing loss at Southern Illinois University School of Medicine. “They support the idea that the brain can be trained to overcome, in part, some age-related hearing loss.”

“The new Northwestern data, with recent animal data from Michael Merzenich and his colleagues at University of California, San Francisco, strongly suggest that intensive training even late in life could improve speech processing in older adults and, as a result, improve their ability to communicate in complex, noisy acoustic environments,” Caspary added.

Previous studies from Kraus’ Auditory Neuroscience Laboratory suggest that musical training also offset losses in memory and difficulties hearing speech in noise -- two common complaints of older adults. The lab has been extensively studying the effects of musical experience on brain plasticity across the life span in normal and clinical populations, and in educational settings.

However, Kraus warns that the current study’s findings were not pervasive and do not demonstrate that musician’s have a neural timing advantage in every neural response to sound. “Instead, this study showed that musical experience selectively affected the timing of sound elements that are important in distinguishing one consonant from another.”

The automatic neural responses to speech sounds delivered to 87 normal-hearing, native English-speaking adults were measured as they watched a captioned video. “Musician” participants began musical training before age 9 and engaged consistently in musical activities through their lives, while “non-musicians” had three years or less of musical training.

Kraus, who co-authored the study with Northwestern researchers Alexandra Parberty-Clark, Samira Anderson and Emily Hittner, is available at nkraus@northwestern.edu or at (847) 491-3181. For more about the work of Kraus’ Auditory Neuroscience Laboratory on music perception and learning-associated brain plasticity, visit mailto:http://www.soc.northwestern.edu/brainvolts/.

Wendy Leopold is the education editor. Contact her at w-leopold@northwestern.edu

Wendy Leopold | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>