Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Multitasking Can Improve Judgments

13.05.2013
A team of researchers from the University of Basel finds that multitasking does not always result in poor judgments. In fact, multitasking can improve performance – provided that the task at hand can be best resolved by using a simpler, less demanding strategy.
Research has revealed that multitasking impedes performance across a variety of tasks. Emergency room nurses that are interrupted multiple times while treating a patient can be more likely to make medication errors. Driving while speaking on a mobile phone significantly increases the probability of an automobile accident. At the same time, however, experienced golfers putt better when distracted than experienced golfers who are focusing on performance. Distractions resulting from the presence of other people can increase an individual’s performance, too. Why?

Addressing the Contradictions
In a forthcoming issue of Psychological Science, one of the world’s top-ranked empirical journals in psychology, a team of researchers from the University of Basel helps to clarify these apparent contradictions. Lead author Janina Hoffmann, a Ph.D. student in Economic Psychology, and her co-authors Dr. Bettina von Helversen and Prof. Dr. Jörg Rieskamp, find that the type of judgment strategy that an individual employs strongly conditions how the “cognitive load” induced by multitasking affects performance. Higher cognitive load can actually improve performance when the task can be best completed using a less demanding, similarity-based strategy that informs judgments by retrieving past instances from memory.

The study is supported by the findings of two experiments conducted at the University of Basel. The first study exposed 90 participants to variable cognitive loads as they were asked to solve a judgment task whose solution was best achieved through the use of a similarity-based strategy (predicting how many cartoon characters another cartoon character could catch). Most participants switched to using a similarity-based strategy and produced more accurate judgments. The second study then exposed 60 participants to a linear task whose solution was not conducive to similarity-based strategies but rather rule- based strategies. Those participants who employed a similarity-based strategy made poorer judgments. The experiments were conducted with financial support from the Swiss National Science Foundation.

Moving Forward
Cognitive load does not per se lead to worse performance, but rather it can, dependent on strategy choice, lead to better performance. The researchers believe that it is important to decipher cognitive strategies that people choose under given levels of cognitive load. Hoffmann claims, “A better understanding of these cognitive strategies may permit future studies to predict the precise circumstances under which people can solve a problem particularly well.”

Original article
Janina A. Hoffmann, Bettina von Helversen and Jörg Rieskamp
Deliberation's Blindsight: How Cognitive Load Can Improve Judgments
Psychological Science, published online 10 April 2013| doi: 10.1177/0956797612463581

Further Information
Janina Hoffmann, University of Basel, Faculty of Psychology,
email: janina.hoffmann@unibas.ch, tel. +41 61 267 06 57
Weitere Informationen:
http://dx.doi.org/10.1177/0956797612463581 - Abstract

Reto Caluori | idw
Further information:
http://www.unibas.ch

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>