Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Multitasking Can Improve Judgments

13.05.2013
A team of researchers from the University of Basel finds that multitasking does not always result in poor judgments. In fact, multitasking can improve performance – provided that the task at hand can be best resolved by using a simpler, less demanding strategy.
Research has revealed that multitasking impedes performance across a variety of tasks. Emergency room nurses that are interrupted multiple times while treating a patient can be more likely to make medication errors. Driving while speaking on a mobile phone significantly increases the probability of an automobile accident. At the same time, however, experienced golfers putt better when distracted than experienced golfers who are focusing on performance. Distractions resulting from the presence of other people can increase an individual’s performance, too. Why?

Addressing the Contradictions
In a forthcoming issue of Psychological Science, one of the world’s top-ranked empirical journals in psychology, a team of researchers from the University of Basel helps to clarify these apparent contradictions. Lead author Janina Hoffmann, a Ph.D. student in Economic Psychology, and her co-authors Dr. Bettina von Helversen and Prof. Dr. Jörg Rieskamp, find that the type of judgment strategy that an individual employs strongly conditions how the “cognitive load” induced by multitasking affects performance. Higher cognitive load can actually improve performance when the task can be best completed using a less demanding, similarity-based strategy that informs judgments by retrieving past instances from memory.

The study is supported by the findings of two experiments conducted at the University of Basel. The first study exposed 90 participants to variable cognitive loads as they were asked to solve a judgment task whose solution was best achieved through the use of a similarity-based strategy (predicting how many cartoon characters another cartoon character could catch). Most participants switched to using a similarity-based strategy and produced more accurate judgments. The second study then exposed 60 participants to a linear task whose solution was not conducive to similarity-based strategies but rather rule- based strategies. Those participants who employed a similarity-based strategy made poorer judgments. The experiments were conducted with financial support from the Swiss National Science Foundation.

Moving Forward
Cognitive load does not per se lead to worse performance, but rather it can, dependent on strategy choice, lead to better performance. The researchers believe that it is important to decipher cognitive strategies that people choose under given levels of cognitive load. Hoffmann claims, “A better understanding of these cognitive strategies may permit future studies to predict the precise circumstances under which people can solve a problem particularly well.”

Original article
Janina A. Hoffmann, Bettina von Helversen and Jörg Rieskamp
Deliberation's Blindsight: How Cognitive Load Can Improve Judgments
Psychological Science, published online 10 April 2013| doi: 10.1177/0956797612463581

Further Information
Janina Hoffmann, University of Basel, Faculty of Psychology,
email: janina.hoffmann@unibas.ch, tel. +41 61 267 06 57
Weitere Informationen:
http://dx.doi.org/10.1177/0956797612463581 - Abstract

Reto Caluori | idw
Further information:
http://www.unibas.ch

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>