Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple births lead to weight gain and other problems for mouse moms and male offspring

27.01.2012
Women have long bemoaned the fact that as they have more children, their weight gain from pregnancy becomes more difficult to lose.

A new study using a mouse model that mimics the human effects of multiparity (giving birth more than once) has found that mouse moms who gave birth four times accrued significantly more fat compared to primiparous females (those giving birth once) of similar age.

The study also found significantly more inflammation in the livers of multiparous animals. Multiparity's effect also extended to the male offspring, who showed significant weight gain during adulthood. Their primiparous counterparts did not, despite similar levels of food consumption. The findings are contained in a study entitled "Multiparity Leads to Obesity and Inflammation in Mothers and Obesity in Male Offspring," and appear in the American Journal of Physiology – Endocrinology and Metabolism, published by the American Physiological Society.

Methodology

Researchers at the University of Cincinnati designed the study in two parts. In the first part, they established the mouse model that mimics multiparity-induced obesity in humans. In the second part, they examined male offspring of the multiparous females.

The researchers compared one group of mice that gave birth four times with a second group of mice that gave birth only once, some of these at the same age that the first group had its fourth litter and some at a younger age.

The researchers weighed these animals and assessed the size of their fat deposits. They also performed glucose tolerance tests in all the mice and measured biochemical markers of inflammation. Additionally, the researchers performed similar tests in the male offspring of primiparous and multiparous mice, and measured weight, fat deposits, and glucose tolerance. They also measured the expression levels of various genes involved in storing versus using fat.

Results

The first part of the study showed that giving birth multiple times was a significant contributor to obesity regardless of age, with mice who gave birth multiple times being up to 45 percent heavier than those who had a single litter at the same age that the first animals had their fourth. The multiparous animals had fat deposits several times larger than those in typically-mated primiparous mice, as well as significantly larger glucose spikes after meals, a warning sign for diabetes. Multiparous moms also showed elevated markers for inflammation in numerous body tissues, a condition linked to heart disease, diabetes, cancer, and a variety of other diseases, as compared to the primiparous mice as well as age-matched females fed a high fat diet.

The second part of the study revealed that male offspring of multiparous mice weighed as much as 40 percent more than the male offspring of primiparous mice, despite eating no more food. Interestingly, the differences became apparent when the offspring were older, suggesting that excess energy was stored as fat only after growth rate slowed down. When the researchers examined genes responsible for storing versus using fat, the offspring of multiparous animals appeared to use less fat compared to those of the primiparous animals.

Importance, Implications of the Findings

These findings confirm that in mice, as in humans, giving birth multiple times, regardless of age, can lead to significant weight gain, and inflammation. The results also support the theory that multiple pregnancies induce metabolic stresses on females that have heritable consequences and may be part of an obesity cycle between mothers and offspring.

The authors suggest that finding effective ways to help women lose weight between pregnancies will assist in maintaining their health and that of their children, though additional interventions will likely be required as multiple pregnancies appear to have an adverse effect on women that is independent of her fat mass. "The current studies are important in supporting a healthier, less obese population in that we have defined specific metabolic pathways that are likely involved in the programming of obesity and can be targeted in either the mother or her offspring," the authors say.

Study Team

The study was conducted by Sandra R. Rebholz, Thomas Jones, Katie T. Burke, Anja Jaeschke, Patrick Tso, David A. D'Alessio, and Laura A. Woollett, all of the University of Cincinnati College of Medicine.

NOTE TO EDITORS: The article is available online at http://bit.ly/zcIkKf. To request an interview with a member of the research team please contact Donna Krupa at dkrupa@the-aps.org, @Phyziochick, or 301-634-7209.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS; http://www.the-APS.org/press) has been promoting advances in physiology and medicine for 125 years. To keep up with the science, follow @Phyziochick on Twitter.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>