Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Multiple births lead to weight gain and other problems for mouse moms and male offspring

Women have long bemoaned the fact that as they have more children, their weight gain from pregnancy becomes more difficult to lose.

A new study using a mouse model that mimics the human effects of multiparity (giving birth more than once) has found that mouse moms who gave birth four times accrued significantly more fat compared to primiparous females (those giving birth once) of similar age.

The study also found significantly more inflammation in the livers of multiparous animals. Multiparity's effect also extended to the male offspring, who showed significant weight gain during adulthood. Their primiparous counterparts did not, despite similar levels of food consumption. The findings are contained in a study entitled "Multiparity Leads to Obesity and Inflammation in Mothers and Obesity in Male Offspring," and appear in the American Journal of Physiology – Endocrinology and Metabolism, published by the American Physiological Society.


Researchers at the University of Cincinnati designed the study in two parts. In the first part, they established the mouse model that mimics multiparity-induced obesity in humans. In the second part, they examined male offspring of the multiparous females.

The researchers compared one group of mice that gave birth four times with a second group of mice that gave birth only once, some of these at the same age that the first group had its fourth litter and some at a younger age.

The researchers weighed these animals and assessed the size of their fat deposits. They also performed glucose tolerance tests in all the mice and measured biochemical markers of inflammation. Additionally, the researchers performed similar tests in the male offspring of primiparous and multiparous mice, and measured weight, fat deposits, and glucose tolerance. They also measured the expression levels of various genes involved in storing versus using fat.


The first part of the study showed that giving birth multiple times was a significant contributor to obesity regardless of age, with mice who gave birth multiple times being up to 45 percent heavier than those who had a single litter at the same age that the first animals had their fourth. The multiparous animals had fat deposits several times larger than those in typically-mated primiparous mice, as well as significantly larger glucose spikes after meals, a warning sign for diabetes. Multiparous moms also showed elevated markers for inflammation in numerous body tissues, a condition linked to heart disease, diabetes, cancer, and a variety of other diseases, as compared to the primiparous mice as well as age-matched females fed a high fat diet.

The second part of the study revealed that male offspring of multiparous mice weighed as much as 40 percent more than the male offspring of primiparous mice, despite eating no more food. Interestingly, the differences became apparent when the offspring were older, suggesting that excess energy was stored as fat only after growth rate slowed down. When the researchers examined genes responsible for storing versus using fat, the offspring of multiparous animals appeared to use less fat compared to those of the primiparous animals.

Importance, Implications of the Findings

These findings confirm that in mice, as in humans, giving birth multiple times, regardless of age, can lead to significant weight gain, and inflammation. The results also support the theory that multiple pregnancies induce metabolic stresses on females that have heritable consequences and may be part of an obesity cycle between mothers and offspring.

The authors suggest that finding effective ways to help women lose weight between pregnancies will assist in maintaining their health and that of their children, though additional interventions will likely be required as multiple pregnancies appear to have an adverse effect on women that is independent of her fat mass. "The current studies are important in supporting a healthier, less obese population in that we have defined specific metabolic pathways that are likely involved in the programming of obesity and can be targeted in either the mother or her offspring," the authors say.

Study Team

The study was conducted by Sandra R. Rebholz, Thomas Jones, Katie T. Burke, Anja Jaeschke, Patrick Tso, David A. D'Alessio, and Laura A. Woollett, all of the University of Cincinnati College of Medicine.

NOTE TO EDITORS: The article is available online at To request an interview with a member of the research team please contact Donna Krupa at, @Phyziochick, or 301-634-7209.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS; has been promoting advances in physiology and medicine for 125 years. To keep up with the science, follow @Phyziochick on Twitter.

Donna Krupa | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>