Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-Laboratory Study Sizes Up Nanoparticle Sizing

13.08.2009
As a result of a major inter-laboratory study, the standards body ASTM International has been able to update its guidelines for a commonly used technique for measuring the size of nanoparticles in solutions.

The study, which was organized principally by researchers from the National Institute of Standards and Technology (NIST) and the Nanotechnology Characterization Laboratory of the National Cancer Institute, enabled updated guidelines that now include statistically evaluated data on the measurement precisions achieved by a wide variety of laboratories applying the ASTM guide.

Data from the inter-laboratory comparison gathered from 26 different laboratories will provide a valuable benchmark for labs measuring the sizes and size distribution of nanoparticles suspended in fluids—one of the key measurements in nanotechnology research, especially for biological applications, according to materials researcher Vince Hackley, who led the NIST portion of the study.

Size is an important characteristic of nanoparticles in a variety of potential uses, but particularly in biotech applications where they are being studied for possible use in cancer therapies. The size of a nanoparticle can significantly affect how cells respond to it. (See, for example “Study: Cells Selectively Absorb Short Nanotubes,” NIST Tech Beat, March 30, 2007.)

One widely used method for rapidly measuring the size profile of nanoparticles in, say, a buffer solution, is photon correlation spectroscopy (PCS), sometimes called “dynamic light scattering.” The technique is powerful but tricky. The basic idea is to pass a laser beam through the solution and then to measure how rapidly the scattered light is fluctuating—faster moving particles cause the light scattering to change more rapidly than slower moving particles. If you know that, plus several basic parameters such as the viscosity and temperature of the fluid, says Hackley, and you can control a number of potential sources of error, then you can calculate meaningful size values for the particles.

ASTM standard E2490 is a guide for doing just that. The goal of the ASTM-sponsored study was to evaluate just how well a typical lab could expect to measure particle size following the guide. “The study really assesses, in a sense, how well people can apply these techniques given a fairly well-defined protocol and a well-defined material,” explains Hackley. Having a “well-defined material” was a key factor, and one thing that made the experiment possible was the release this past year of NIST’s first nanoparticle reference standards for the biomedical research community—NIST-certified solutions of gold nanoparticles of three different diameters, a project also supported by NCL. (See “NIST Reference Materials Are ’Gold Standard’ for Bio-Nanotech Research, ” NIST Tech Beat, Jan. 8, 2008.)

The inter-laboratory study required participating labs to measure particle size distribution in five samples—the three NIST reference materials and two solutions of dendrimers, a class of organic molecules that can be synthesized within a very narrow size range. The labs used not only PCS, but also electron and atomic force microscopy. The results were factored into precision and bias tables that are now a part of the ASTM standard.

For more on the study and ASTM standard E2490, see the ASTM International release “Extensive Interlaboratory Study Incorporated into Revision of ASTM Nanotechnology Standard.”

Michael Baum | Newswise Science News
Further information:
http://www.nist.gov

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>