Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-Laboratory Study Sizes Up Nanoparticle Sizing

13.08.2009
As a result of a major inter-laboratory study, the standards body ASTM International has been able to update its guidelines for a commonly used technique for measuring the size of nanoparticles in solutions.

The study, which was organized principally by researchers from the National Institute of Standards and Technology (NIST) and the Nanotechnology Characterization Laboratory of the National Cancer Institute, enabled updated guidelines that now include statistically evaluated data on the measurement precisions achieved by a wide variety of laboratories applying the ASTM guide.

Data from the inter-laboratory comparison gathered from 26 different laboratories will provide a valuable benchmark for labs measuring the sizes and size distribution of nanoparticles suspended in fluids—one of the key measurements in nanotechnology research, especially for biological applications, according to materials researcher Vince Hackley, who led the NIST portion of the study.

Size is an important characteristic of nanoparticles in a variety of potential uses, but particularly in biotech applications where they are being studied for possible use in cancer therapies. The size of a nanoparticle can significantly affect how cells respond to it. (See, for example “Study: Cells Selectively Absorb Short Nanotubes,” NIST Tech Beat, March 30, 2007.)

One widely used method for rapidly measuring the size profile of nanoparticles in, say, a buffer solution, is photon correlation spectroscopy (PCS), sometimes called “dynamic light scattering.” The technique is powerful but tricky. The basic idea is to pass a laser beam through the solution and then to measure how rapidly the scattered light is fluctuating—faster moving particles cause the light scattering to change more rapidly than slower moving particles. If you know that, plus several basic parameters such as the viscosity and temperature of the fluid, says Hackley, and you can control a number of potential sources of error, then you can calculate meaningful size values for the particles.

ASTM standard E2490 is a guide for doing just that. The goal of the ASTM-sponsored study was to evaluate just how well a typical lab could expect to measure particle size following the guide. “The study really assesses, in a sense, how well people can apply these techniques given a fairly well-defined protocol and a well-defined material,” explains Hackley. Having a “well-defined material” was a key factor, and one thing that made the experiment possible was the release this past year of NIST’s first nanoparticle reference standards for the biomedical research community—NIST-certified solutions of gold nanoparticles of three different diameters, a project also supported by NCL. (See “NIST Reference Materials Are ’Gold Standard’ for Bio-Nanotech Research, ” NIST Tech Beat, Jan. 8, 2008.)

The inter-laboratory study required participating labs to measure particle size distribution in five samples—the three NIST reference materials and two solutions of dendrimers, a class of organic molecules that can be synthesized within a very narrow size range. The labs used not only PCS, but also electron and atomic force microscopy. The results were factored into precision and bias tables that are now a part of the ASTM standard.

For more on the study and ASTM standard E2490, see the ASTM International release “Extensive Interlaboratory Study Incorporated into Revision of ASTM Nanotechnology Standard.”

Michael Baum | Newswise Science News
Further information:
http://www.nist.gov

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>