Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-Center Clinical Study Intensifies First Strike at High-Risk Cancer in Kids

13.06.2012
An experimental treatment that combines intense chemotherapy with a radioactive isotope linked to synthesized neurotransmitter is being tested in newly diagnosed cases of high-risk neuroblastoma – a deadly, hard-to-cure childhood cancer.

The experimental radiopharmaceutical, 131I-MIBG, has already been tested in children with relapsed and resistant neuroblastoma, with encouraging results in reducing tumor size. This has prompted doctors in a new multi-center pilot clinical trial to see if their innovative combination therapy can help improve cure rates for newly diagnosed children and young adults, according to Brian Weiss, MD, trial chair and an oncologist at the Cincinnati Children’s Hospital Medical Center.

Cure rates for neuroblastoma have plateaued at about 40 percent and new solutions are needed to improve outcomes, said Weiss, a member of the medical center’s Cancer and Blood Diseases Institute.

“Unlike some diseases, there is no single detectable biological sign of neuroblastoma, so it’s hard to catch early,” he explained. “Children with relapsed disease usually don’t survive more than a few years. We want to see if giving this more intensive treatment right after diagnosis will safely decrease the chances of the cancer coming back.”

Neuroblastoma is one of the most commonly diagnosed childhood cancers, developing in nerve cells outside the brain. The cancer is usually first diagnosed by showing up as a lump or mass in the belly, or near the spinal cord in the chest or neck. The disease can spread to bone, the liver, lymph nodes and bone marrow. In high-risk neuroblastoma, the tumor has often spread from its primary site and is harder to treat.

MIBG stands for Meta-Iodo-Benzyl-Guanidine, a synthesized form of the adrenal gland hormone and neurotransmitter adrenalin. MIBG concentrates selectively in the body’s sympathetic nervous system, which helps control glands and muscles. When attached to the radioactive isotope iodine-131, it’s known as 131I-MIBG. After being injected, 131I-MIBG targets and is taken up by nerve tumors like neuroblastoma. This exposes the cancer cells to very high doses of radiation from the iodine-131, with minimal toxicity to neighboring normal cells.

Standard treatment for neuroblastoma normally includes several rounds of chemotherapy combined with surgery and external radiation. In the current trial, a round of chemotherapy will be replaced by injection of 131I-MIBG combined with the chemotherapy drugs vincristine and irinotecan. The chemotherapy drugs will kill some of the cancer cells and, according to research, may help 131I-MIBG do a better job of eradicating tumor cells, said Weiss.

Patients receiving the treatment will also receive a transfusion of previously collected blood stem cells to boost their blood counts after being injected with the radioactive isotope.

The trial is coordinated through and sponsored by the Children’s Oncology Group (COG), an international research consortium of the National Cancer Institute (National Institutes of Health). Thirteen hospitals in the United States and Canada are currently participating in the trial, which is expected to last two years and include up to 44 newly diagnosed patients who have not received previous treatment for their neuroblastoma.

Data from the trial, considered a small pilot study, will be used to help inform larger subsequent clinical trials testing 131I-MIBG-vincristine-irinotecan therapy for neuroblastoma, according to Weiss. The pilot trial’s initial goal is determining the feasibility of newly diagnosed patients traveling from a participating home/regional medical center to participating specialized centers that will administer the 131I-MIBG part of therapy, and then back to their home center for the remainder of treatment.

Four of the 13 currently participating hospitals will administer the 131I-MIBG portion of the therapy, which requires special capabilities: Cincinnati Children’s, Children’s Hospital of Philadelphia, University of California-San Francisco School of Medicine, and C.S. Mott Children’s Hospital in Ann Arbor, Mich.

Other participating hospitals include: Phoenix Children’s Hospital, Medical University of Southern Carolina, University of Texas Southwestern Medical Center, Children’s Hospital Los Angeles, The Children’s Hospital Denver, Children’s National Medical Center, Primary Children’s Medical Center, Salt Lake City, University of Chicago, and University of Alabama, Birmingham. Two additional medical centers are expected to be added to the trial, Weiss said.

For more information, contact the Cincinnati Children’s Cancer and Blood Diseases Institute at 513-636-2799 or cancer@cchmc.org,or visit: http://clinicaltrials.gov/ct2/show/NCT01175356?term=MIBG&rank=13.

For more information about neuroblastoma therapies and research at the Cincinnati Children’s Cancer and Blood Diseases Institute, please visit: http://www.cincinnatichildrens.org/service/n/neuroblastoma/default/.

Contact Information
Nick Miller, 513-803-6035, nicholas.miller@cchmc.org

Nick Miller | EurekAlert!
Further information:
http://www.cchmc.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>