Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MUHC researchers identify biomarkers that could lead to early diagnosis of colorectal cancer

Diagnosing colorectal cancer (CRC) is complex; it relies on significant invasive tests and subjective evaluations.

This process may soon become much easier thanks to a medical breakthrough by scientists at the Research Institute of the McGill University Health Centre (RI-MUHC). The researchers have identified genetic changes in the colon lining, or mucosa, in colorectal cancer patients that could be used as biomarkers of the disease.

That will allow doctors to diagnose patients earlier, more accurately and less invasively. The study, recently published online, in Cancer Prevention Research, has implications for the nearly one million people diagnosed annually worldwide.

“The gold standard of diagnosis is currently colonoscopy,” says corresponding author of the study, Dr. Rima Rozen, a geneticist from the Departments of Human Genetics and Pediatrics at The Montreal Children’s Hospital of the MUHC and McGill University. “This is an invasive procedure, where the physician looks for abnormal tissue or growths also known as polyps.” Additionally, given surging demand for colonoscopies, this research may ultimately offer an alternative option for early diagnosis, paving the way for the reduction in wait time.

According to Dr. Rozen, who is also a researcher of the Medical Genetics and Genomics Axis at the RI-MUHC, having genetic biomarkers of CRC will enhance the diagnostic procedure. “This new method could help to avoid false negative findings, which can occur in 10 to 15 per cent of endoscopic procedures,” she says. “The key is using the right genes. I believe the ones we have identified are good candidates.”

Dr. Rozen and her colleagues first identified five possible abnormal marker genes in a colon cancer mouse model. They then confirmed that these candidate biomarker genes were also abnormal in tissue obtained from colon cancer patients. “Not only did this show that our mouse model mimics the human disease,” says Dr. Rozen. “But more importantly, it identified genes that could be used for colorectal cancer diagnosis.”

Interestingly, the abnormal patterns of these genes were detected in otherwise normal colon cells that were not near the tumor site. “CRC develops in different stages,” says Dr. Rozen. “This finding suggests that it may be possible to take tissue samples in more accessible regions of the gastrointestinal tract or, ideally, in blood or stool, and look for biomarkers as an early indicator of disease.”

About colorectal cancer
Colorectal cancer – also known as bowel or colon cancer – refers to the abnormal cell growth in the colon (intestine) and rectum. The abnormal cells can develop into benign (non-cancerous) tumours called polyps. Although not all polyps develop into colorectal cancer, colorectal cancer almost always develops from a polyp. Over time, genes in the polyp mutate and cells within them become malignant (cancerous). Colorectal cancer is the most common cancer in developed countries.
About the study:
The study, Genes with aberrant expression in murine preneoplastic intestine show epigenetic and expression changes in normal mucosa of colon cancer patients, was co-authored by Daniel Leclerc, Nancy Lévesque, Yuanhang Cao, Liyuan Deng, Qing Wu, and Rima Rozen of the RI-MUHC, Montreal and Jasmine Powell and Carmen Sapienza of the Temple University School of Medicine, Philadelphia.

This research was made possible thanks to funding from the Canadian Institutes of Health Research (CIHR).

Related links:
Cited study:
McGill University Health Centre (MUHC):
Research Institute of the MUHC:
McGill University:
Temple University School of Medicine:
For more information please contact:
Julie Robert
Public Affairs and Strategic Planning
McGill University Health Centre
t: 514-843-1560

Julie Robert | McGill University Health Centre
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>