Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Study Suggests New Rehabilitation Methods for Amputees and Stroke Patients

13.03.2014

Research on amputees with chronic dominant hand loss may inform rehabilitation of stroke patients

When use of a dominant hand is lost by amputation or stroke, a patient is forced to compensate by using the nondominant hand exclusively for precision tasks like writing or drawing. Presently, the behavioral and neurological effects of chronic, forced use of the nondominant hand are largely understudied and unknown. Now, researchers at the University of Missouri have shed light on ways in which a patient compensates when losing a dominant hand and suggest new and improved rehabilitation techniques for those suffering from amputation or stroke.

Frey, Scott

Frey and his team found that patients compensate when losing a dominant hand, suggesting new and improved rehabilitation techniques for those suffering from amputation or stroke.

“Half of the work in our lab focuses on amputees, particularly upper limb amputees, who are out of the acute phase of their recoveries; the other half involves those who have suffered the loss of function due to stroke or neurological disorders,” said Scott Frey, professor of psychological sciences and director of the Brain Imaging Center at MU. “Our project analyzed the consequences of losing your dominant hand and how behaviors change for amputees. We also used functional magnetic resonance imaging (fMRI) to study brain function in people adapting to those situations. Our hope is that by studying how amputees cope in these circumstances, we can help improve rehabilitation methods and quality of life in patients facing this loss.”

In the study, amputees forced to use nondominant hands performed simple drawing tests and were checked for speed and accuracy. Frey and Benjamin Philip, a postdoctoral research fellow in the Department of Psychological Sciences at MU, found that individuals who were forced to compensate with their nondominant left hands actually performed precision tasks as well as the control group did with their dominant right hands.

... more about:
»Amputees »Neuroscience »activity »fMRI »function »sensory »stroke

The same tests were then conducted under fMRI so that brain function could be observed. Researchers found that the areas formerly devoted to motor and sensory functions of the amputated hand actually contributed to compensation for the loss on the nondominant side.

“Most people know that the left side of your brain controls the right hand and vice versa,” Frey said. “For example, if you’re right-handed and you’re writing or drawing, the left sensory and motor areas show increased activity. We found that when amputees were forced to use their nondominant hands for years or decades, they exhibited performance-related increases in both the right and left hemispheres. In other words, their ability to compensate with the left hand appears to involve exploiting brain mechanisms that previously were devoted to controlling their now absent dominant hands. This compensatory reorganization raises the hope that, through targeted training, non-dominant hand functions can be vastly improved, enabling a better quality of life for those who have lost dominant hand functions due to bodily or brain injury or disease.”

Although more work is needed, Frey specifically suggests that his team’s work on amputees may inform rehabilitation of stroke patients who do not regain precision control of the dominant hand during acute and subacute phases of recovery. For some patients in the chronic phase of recovery, which is the first 7-18 months following a stroke, it may make sense to train the less affected nondominant side.

Frey’s study, “Compensatory changes accompanying chronic forced use of the nondominant hand by unilateral amputees,” was published in The Journal of Neuroscience, and was funded by a Department of Defense grant. Frey is the Miller Family Chair in Cognitive Neuroscience and holds a joint appointment as an adjunct professor in the Departments of Neurology, Psychiatry and Physical Medicine and Rehabilitation in the School of Medicine at MU.

Jeff Sossamon | EurekAlert!
Further information:
http://munews.missouri.edu/news-releases/2014/0312-mu-study-suggests-new-rehabilitation-methods-for-amputees-and-stroke-patients/

Further reports about: Amputees Neuroscience activity fMRI function sensory stroke

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>