Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Study Links Inactivity with Risk Factors for Type 2 Diabetes

24.08.2011
Acute transitions to inactive lifestyles disrupt control of blood sugar levels

79 million American adults have prediabetes and will likely develop diabetes later in life, according to the Centers for Disease Control and Prevention. As the number of people diagnosed with diabetes continues to grow, researchers are focusing on discovering why the prevalence of the disease is increasing.

John Thyfault, an assistant professor in MU’s departments of Nutrition and Exercise Physiology and Internal Medicine, has found that ceasing regular physical activity impairs glycemic control (control of blood sugar levels), suggesting that inactivity may play a key role in the development of type 2 diabetes.

John Thyfault found that physical inactivity disrupts control of blood sugar levels and plays a key role in the development of type 2 diabetes.

“We now have evidence that physical activity is an important part of the daily maintenance of glucose levels,” Thyfault said. “Even in the short term, reducing daily activity and ceasing regular exercise causes acute changes in the body associated with diabetes that can occur before weight gain and the development of obesity.”

Thyfault studied the relationship between low levels of physical activity and elevated levels of postprandial glucose (PPG), or the spikes in blood sugar that occur after a meal. PPG is a risk factor for the development of type 2 diabetes and has been associated with increased incidences of cardiovascular disease and death. Thyfault found that when healthy individuals reduced their physical activity by about half for three days, their PPG responses to meals doubled.

“A single bout of moderate exercise can improve the way the body maintains glucose homeostasis (blood glucose regulation) and reduce PPG, but becoming inactive for a short period of time quickly disrupts glucose homeostasis,” Thyfault said. “This study shows that physical activity directly impacts health issues that are preventable.”

In the study, Thyfault monitored the activity levels and diets of healthy and moderately active young adults. Participants then reduced their physical activity by 50 percent for three days while replicating the diet they consumed when they were active. Continuous glucose monitors worn by the subjects during the period of inactivity revealed significantly increased levels of PPG. Spikes in blood glucose after meals can indicate increased risks for type 2 diabetes and cardiovascular disease.

“It is recommended that people take about 10,000 steps each day,” Thyfault said. “Recent evidence shows that most Americans are only taking about half of that, or 5,000 steps a day. This chronic inactivity leads to impaired glucose control and increases the risk of developing diabetes.”

The study, “Lowering Physical Activity Impairs Glycemic Control in Healthy Volunteers,” will be published in Medicine & Science in Sports & Exercise. It was funded by the University of Missouri Institute for Clinical and Translational Sciences, the MU Research Council and the National Institutes of Health (NIH). The Department of Nutrition and Exercise Physiology is jointly administered by MU’s College of Agriculture, Food and Natural Resources, College of Human Environmental Sciences and School of Medicine. Thyfault has a joint appointment in the Department of Internal Medicine in the School of Medicine.

Samantha Craven | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>