Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Study Finds More Accurate Method to Diagnose Pancreatic Cancer

07.11.2013
Group of four screening characteristics offers more reliable identification

Researchers from the University of Missouri have found a more accurate laboratory method for diagnosing pancreatic cancer, the fourth leading cause of cancer death in the United States.

The disease causes more than 38,000 deaths each year in the United States, and kills 94 percent of people with the illness within five years, according to the National Cancer Institute.

"Pancreatic cancer can be difficult to diagnose because of subtle differences that distinguish between healthy tissue, cancerous tissue and tissue that is atypical, or suspicious," said Lester Layfield, MD, professor and chair of the MU School of Medicine's Department of Pathology and Anatomical Sciences. "Our goal was to find a way to make a more accurate and reproducible diagnosis."

Because of the pancreas' location within the body, no routine screening methods, such as mammography for breast cancer, exist for detecting pancreatic cancer.

If a physician suspects a patient may have pancreatic cancer, a biopsy of the pancreatic tissue is taken through a minimally invasive technique called endoscopic ultrasound-guided fine-needle aspiration.

"Traditionally, pathologists have examined a tissue sample through a microscope and made a diagnosis based on the overall features of all the cells in the tissue sample," Layfield said. "Previous research has shown an experienced pathologist can diagnose pancreatic cancer with accuracy in the mid-to-upper 80 percent range using current techniques. However, we wanted to develop a more accurate method by determining which cellular features are most closely associated with cancer."

To develop the new diagnostic method, MU researchers performed a retrospective study of the records from 57 patients at University of Missouri Health Care who were tested for pancreatic cancer. They evaluated 16 features of pancreatic biopsies that could be evaluated under a microscope and performed a statistical analysis to determine which could be most reliably identified by multiple pathologists and which were most likely to be associated with pancreatic cancer.

"Through our analysis, we developed a group of four characteristics that allow a pathologist to diagnose pancreatic cancer with 93 percent accuracy — a substantial improvement over the traditional method," Layfield said. "I believe this new technique can help pathologists improve the diagnosis of pancreatic cancer, ultimately improving care for patients by providing an evidence-based approach to diagnosing the disease and determining the best treatment."

The four features of pancreatic cancer the researchers identified are:

- a wide variation in the size of pancreatic cells' nuclei, called anisonucleosis

- oversized nucleoli, called macronucleoli

- single atypical epithelia cells, a type of cell found in the pancreas

- mucinous metaplasia, which is the production of mucin in cells that normally don't produce the substance

The study, "Risk Stratification Using Morphological Features in Endoscopic-ultrasonography Guided Fine Needle Aspirations of Pancreatic Ductal Adenocarcinoma," was presented at the American Society for Clinical Pathology's 2013 annual meeting.

Colin Planalp | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>