Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU scientists study how to improve pesticide efficiency

01.03.2012
In 2007, a controversial pesticide was approved by the Food and Drug Administration for use on fruit and vegetable crops, mainly in California and Florida.

Farm workers and scientists protested the approval of the pesticide because its active ingredient, methyl iodide, is a known carcinogen. Now, MU researchers are studying the molecular structure of the pesticide to determine if the product could be made more efficient and safer for those living near, and working in, treated fields.

Methyl iodide is the active ingredient used in a pesticide known commercially as Midas. Midas is a mix of methyl iodide and chloropicrin, a rat poison, and is used primarily on the fields that will grow strawberries, tomatoes and bell peppers. In a new study published this month in the Journal of Agricultural and Food Chemistry, MU researchers studied why the manufacturer blended the chemicals to determine if a different chemical combination might be possible.

"We found that the two chemicals, methyl iodide and chloropicrin, are mixed to slow the release of methyl iodide and increase its effectiveness," said Rainer Glaser, professor of chemistry in the MU College of Arts & Science. "However, we believe that a different chemical mix could further slow the release of methyl iodide and allow farmers to use less of the pesticide, which would make the area safer for workers and the public."

Methyl iodide is a fumigant, meaning that it fills an air space with gas, suffocating and poisoning the pests within the airspace. Farm workers dressed in protective suits apply Midas in liquid form to fields 10 to 14 days prior to planting and cover future crop rows with plastic sheeting. During that time period, the pesticide is released in gas form, suffocating pests in the top layer of the soil. However, much of the fumigant is useless as it is lost into the atmosphere upon application and during the release period due to ventilation of the area. All of the pesticide is gone before the area is planted.

"Farmers use 200 to 300 pounds of Midas per acre and nearly 80 percent of the pesticide is not effective in killing pests," said Kaitlan Prugger, a co-author and undergraduate researcher. "Gas lost to the atmosphere could pose risks to farm workers and nearby communities. Even a small improvement in effectiveness achieved through a change in the chemical blend could greatly reduce the amount of pesticide used per acre."

The use of methyl iodide is a consequence of the Montreal Protocol on Substances that Deplete the Ozone Layer. Prior to the protocol, farmers used methyl bromide to fumigate strawberry and tomato fields. However, methyl bromide was found to deplete the ozone and its use was phased out completely in 2005.

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>