Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Researcher Refining Synthetic Molecules to Prevent HIV Resistance

18.12.2008
Broad-spectrum aptamers will prevent HIV virus from reproducing within the body

Evolving HIV viral strains and the adverse side effects associated with long-term exposure to current treatments propel scientists to continue exploring alternative HIV treatments.

In a new study, a University of Missouri researcher has identified broad-spectrum aptamers. Aptamers are synthetic molecules that prevent the HIV virus from reproducing. In lab tests, aptamers known as RT5, RT6, RT47 and some variants of those were recently identified to be broad-spectrum, which would allow them to treat many subtypes of HIV-1. Now, researchers are gaining a better understanding of the biochemical characteristics that make aptamers broad-spectrum.

“Aptamers are promising candidates as anti-HIV and anti-cancer therapeutic agents for reducing virus infectivity,” said Donald Burke-Aguero, an associate professor in the Department of Molecular Microbiology and Immunology in the Christopher S. Bond Life Sciences Center. “They also might be beneficial in developing gene therapy applications.”

In cell cultures, aptamers have suppressed viral replication by inhibiting important enzymes in the HIV-1 virus. One important enzyme is reverse transciptase (RT), which copies genetic material and generates new viruses. Scientists hope to create aptamers that will disrupt RT and suppress the virus’s growth. Aptamers can reduce viral infectivity by blocking the normal action of RT.

“Successful aptamers get in the way of the virus’s genetic material, which it is trying to copy as it invades a cell,” Burke-Aguero said. “The structure of the aptamer is very important. Broad-spectrum aptamers must have an adaptable structure, which make it difficult for RT to get around them.

There are several different HIV-1 subtypes around the world, and each subtype has a different amino acid sequence making it difficult to create a single aptamer that will work on every substype. Synthetic molecules must be the right size and shape to bind with HIV proteins, Burke-Aguero said.

“The first batch of aptamers developed were designed for a particular virus and would not work on all strains of HIV,” Burke-Aguero said. “Now our goal is to develop broad-spectrum aptamers. If an aptamer has broad-spectrum function, viruses will be less likely to develop resistance to the therapy. We are in the process of refining aptamers and understanding the nature of resistance in order to get multi-year to lifetime protection.”

Burke-Aguero’s study, “Novel Bimodular DNA Aptamers with Guanosine Quadruplexes Inhibit Phylogenetically Diverse HIV-1 Reverse Transciptases,” was published in Nucleic Acids Research. It was co-authored by Daniel Michalowski and Rebecca Chitima-Matsiga.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>