Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Researcher Refining Synthetic Molecules to Prevent HIV Resistance

18.12.2008
Broad-spectrum aptamers will prevent HIV virus from reproducing within the body

Evolving HIV viral strains and the adverse side effects associated with long-term exposure to current treatments propel scientists to continue exploring alternative HIV treatments.

In a new study, a University of Missouri researcher has identified broad-spectrum aptamers. Aptamers are synthetic molecules that prevent the HIV virus from reproducing. In lab tests, aptamers known as RT5, RT6, RT47 and some variants of those were recently identified to be broad-spectrum, which would allow them to treat many subtypes of HIV-1. Now, researchers are gaining a better understanding of the biochemical characteristics that make aptamers broad-spectrum.

“Aptamers are promising candidates as anti-HIV and anti-cancer therapeutic agents for reducing virus infectivity,” said Donald Burke-Aguero, an associate professor in the Department of Molecular Microbiology and Immunology in the Christopher S. Bond Life Sciences Center. “They also might be beneficial in developing gene therapy applications.”

In cell cultures, aptamers have suppressed viral replication by inhibiting important enzymes in the HIV-1 virus. One important enzyme is reverse transciptase (RT), which copies genetic material and generates new viruses. Scientists hope to create aptamers that will disrupt RT and suppress the virus’s growth. Aptamers can reduce viral infectivity by blocking the normal action of RT.

“Successful aptamers get in the way of the virus’s genetic material, which it is trying to copy as it invades a cell,” Burke-Aguero said. “The structure of the aptamer is very important. Broad-spectrum aptamers must have an adaptable structure, which make it difficult for RT to get around them.

There are several different HIV-1 subtypes around the world, and each subtype has a different amino acid sequence making it difficult to create a single aptamer that will work on every substype. Synthetic molecules must be the right size and shape to bind with HIV proteins, Burke-Aguero said.

“The first batch of aptamers developed were designed for a particular virus and would not work on all strains of HIV,” Burke-Aguero said. “Now our goal is to develop broad-spectrum aptamers. If an aptamer has broad-spectrum function, viruses will be less likely to develop resistance to the therapy. We are in the process of refining aptamers and understanding the nature of resistance in order to get multi-year to lifetime protection.”

Burke-Aguero’s study, “Novel Bimodular DNA Aptamers with Guanosine Quadruplexes Inhibit Phylogenetically Diverse HIV-1 Reverse Transciptases,” was published in Nucleic Acids Research. It was co-authored by Daniel Michalowski and Rebecca Chitima-Matsiga.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>