Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI study finds that depression uncouples brain's hate circuit

04.10.2011
A new study using MRI scans, led by Professor Jianfeng Feng, from the University of Warwick's Department of Computer Science, has found that depression frequently seems to uncouple the brain's "Hate Circuit". The study entitled "Depression Uncouples Brain Hate Circuit" is published today (Tuesday 4th October 2011) in the journal Molecular Psychiatry.

The researchers used MRI scanners to scan the brain activity in 39 depressed people (23 female 16 male) and 37 control subjects who were not depressed (14 female 23 male). The researchers found the fMRI scans revealed significant differences in the brain circuitry of the two groups.

The greatest difference observed in the depressed patients was the uncoupling of the so-called "hate circuit" involving the superior frontal gyrus, insula and putamen. Other major changes occurred in circuits related to risk and action responses, reward and emotion, attention and memory processing.

The hate circuit was first clearly identified in 2008 by UCL Professor Semir Zeki who found that a circuit which seemed to connect three regions in the brain (the superior frontal gyrus, insula and putamen) when test subjects were shown pictures of people they hated.

The new University of Warwick led research found that in significant numbers of the depressed test subjects they examined by fMRI that this hate circuit had become decoupled. Those depressed people also seemed to have experienced other significant disruptions to brain circuits associated with; risk and action, reward and emotion, and attention and memory processing. The researchers found that in the depressed subjects:

The Hate circuits were 92% per cent likely to be decoupled
The Risk/Action circuit was 92% likely to be decoupled
The Emotion/Reward circuit was 82% likely to be decoupled
Professor Jianfeng Feng, from the University of Warwick's Department of Computer studies said that:

"The results are clear but at first sight are puzzling as we know that depression is often characterized by intense self loathing and there is no obvious indication that depressives are less prone to hate others. One possibility is that the uncoupling of this hate circuit could be associated with impaired ability to control and learn from social or other situations which provoke feelings of hate towards self or others. This in turn could lead to an inability to deal appropriately with feelings of hate and an increased likelihood of both uncontrolled self-loathing and withdrawal from social interactions. It may be that this is a neurological indication that is more normal to have occasion to hate others rather than hate ourselves."

A draft of the paper can be seen at: http://www.dcs.warwick.ac.uk/~feng/papers/mp_11_jf.pdf

Note for editors:

The full list of the paper's authors is as follows: Professor Jianfeng Feng, Department of Computer Science, University of Warwick and also the Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University,; Zhimin Xue, Zhening Liu, and Haojuan Tao, all from the Institute of Mental Health, Second Xiangya Hospital, Central South University, China; Shuixia Guo, Mathematics and Computer Science College, Hunan Normal University, China; Tian Ge, Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai, China; Keith M. Kendrick Cognitive and Systems Neuroscience Group, The Babraham Institute.

Professor Jianfeng Feng | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>