Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI study finds that depression uncouples brain's hate circuit

04.10.2011
A new study using MRI scans, led by Professor Jianfeng Feng, from the University of Warwick's Department of Computer Science, has found that depression frequently seems to uncouple the brain's "Hate Circuit". The study entitled "Depression Uncouples Brain Hate Circuit" is published today (Tuesday 4th October 2011) in the journal Molecular Psychiatry.

The researchers used MRI scanners to scan the brain activity in 39 depressed people (23 female 16 male) and 37 control subjects who were not depressed (14 female 23 male). The researchers found the fMRI scans revealed significant differences in the brain circuitry of the two groups.

The greatest difference observed in the depressed patients was the uncoupling of the so-called "hate circuit" involving the superior frontal gyrus, insula and putamen. Other major changes occurred in circuits related to risk and action responses, reward and emotion, attention and memory processing.

The hate circuit was first clearly identified in 2008 by UCL Professor Semir Zeki who found that a circuit which seemed to connect three regions in the brain (the superior frontal gyrus, insula and putamen) when test subjects were shown pictures of people they hated.

The new University of Warwick led research found that in significant numbers of the depressed test subjects they examined by fMRI that this hate circuit had become decoupled. Those depressed people also seemed to have experienced other significant disruptions to brain circuits associated with; risk and action, reward and emotion, and attention and memory processing. The researchers found that in the depressed subjects:

The Hate circuits were 92% per cent likely to be decoupled
The Risk/Action circuit was 92% likely to be decoupled
The Emotion/Reward circuit was 82% likely to be decoupled
Professor Jianfeng Feng, from the University of Warwick's Department of Computer studies said that:

"The results are clear but at first sight are puzzling as we know that depression is often characterized by intense self loathing and there is no obvious indication that depressives are less prone to hate others. One possibility is that the uncoupling of this hate circuit could be associated with impaired ability to control and learn from social or other situations which provoke feelings of hate towards self or others. This in turn could lead to an inability to deal appropriately with feelings of hate and an increased likelihood of both uncontrolled self-loathing and withdrawal from social interactions. It may be that this is a neurological indication that is more normal to have occasion to hate others rather than hate ourselves."

A draft of the paper can be seen at: http://www.dcs.warwick.ac.uk/~feng/papers/mp_11_jf.pdf

Note for editors:

The full list of the paper's authors is as follows: Professor Jianfeng Feng, Department of Computer Science, University of Warwick and also the Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University,; Zhimin Xue, Zhening Liu, and Haojuan Tao, all from the Institute of Mental Health, Second Xiangya Hospital, Central South University, China; Shuixia Guo, Mathematics and Computer Science College, Hunan Normal University, China; Tian Ge, Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai, China; Keith M. Kendrick Cognitive and Systems Neuroscience Group, The Babraham Institute.

Professor Jianfeng Feng | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>