Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mothers' teen cannabinoid exposure may increase response of offspring to opiate drugs

06.06.2012
Study in rats suggests transgenerational effects

Mothers who use marijuana as teens—long before having children—may put their future children at a higher risk of drug abuse, new research suggests.

Researchers in the Neuroscience and Reproductive Biology section at the Cummings School of Veterinary Medicine conducted a study to determine the transgenerational effects of cannabinoid exposure in adolescent female rats. For three days, adolescent rats were administered the cannabinoid receptor agonist WIN-55, 212-2, a drug that has similar effects in the brain as THC, the active ingredient in marijuana. After this brief exposure, they remained untreated until being mated in adulthood.

The male offspring of the female rats were then measured against a control group for a preference between chambers that were paired with either saline or morphine. The rats with mothers who had adolescent exposure to WIN-55,212-2 were significantly more likely to opt for the morphine-paired chamber than those with mothers who abstained. The results suggest that these animals had an increased preference for opiate drugs.

The study was published in the Journal of Psychopharmocology and funded by the National Institutes of Health.

"Our main interest lies in determining whether substances commonly used during adolescence can induce behavioral and neurochemical changes that may then influence the development of future generations," said Research Assistant Professor John J. Byrnes, the study's lead author, "We acknowledge that we are using rodent models, which may not fully translate to the human condition. Nevertheless, the results suggest that maternal drug use, even prior to pregnancy, can impact future offspring."

Byrnes added that much research is needed before a definitive connection is made between adolescent drug use and possible effects on future children.

The study builds on earlier findings by the Tufts group, most notably a study published last year in Behavioral Brain Research by Assistant Professor Elizabeth Byrnes that morphine use as adolescent rats induces changes similar to those observed in the present study.

Other investigators in the field have previously reported that cannabinoid exposure during pregnancy (in both rats and humans) can affect offspring development, including impairment of cognitive function, and increased risk of depression and anxiety.

Byrnes JJ, Johnson NL, Schenk ME, Byrnes EM. Cannabinoid exposure in adolescent female rats induces transgenerational effects on morphine conditioned place preference in male offspring [published online ahead of print April 15 2012]. J Psychopharmacol, 2012. DOI: 10.1177/0269881112443745

About the Cummings School of Veterinary Medicine at Tufts University
Founded in 1978 in North Grafton, Mass., Cummings School of Veterinary Medicine at Tufts University is internationally esteemed for academic programs that impact society and the practice of veterinary medicine; three hospitals and two clinics that combined log more than 80,000 animal cases each year; and groundbreaking research that benefits animal, public, and environmental health.

Thomas Keppeler | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>