Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do you know what your mother did when she was young?

04.02.2009
A study reveals that the severity of learning disorders may depend not only on the child's environment but also – remarkably – on the mother's environment when she was young.

The study in memory-deficient mice, published in the February 4 issue of The Journal of Neuroscience, was led by Larry Feig, PhD, professor of biochemistry at Tufts University School of Medicine and member of the biochemistry and neuroscience programs at the Sackler School of Graduate Biomedical Sciences at Tufts University.

The researchers studied the brain function of pre-adolescent mice with a genetically-created defect in memory. When these young mice were enriched by exposure to a stimulating environment – including novel objects, opportunities for social interaction and voluntary exercise – for two weeks, the memory defect was reversed. The work showed that this enhancement was remarkably long-lasting because it was passed on to the offspring even though the offspring had the same genetic mutation and were never exposed to an enriched environment.

Previous research has shown that environmental exposures during pregnancy can affect offspring. "A striking feature of this study is that enrichment took place during pre-adolescence, months before the mice were even fertile, yet the effect reached into the next generation," said Feig.

"The offsprings' improved memory was not the result of better nurturing by mothers who were enriched when they were young. When the offspring were raised by non-enriched foster mothers, the offspring maintained the beneficial effect," said co-author Junko Arai, PhD, postdoctoral associate in Feig's laboratory.

"The effect lasted until adolescence, when it waned, suggesting that this process is designed specifically to aid the young brain," continued Shaomin Li, PhD, MD, co-author, former postdoctoral associate in Feig's laboratory, now at Brigham and Women's Hospital.

"This example of 'inheritance of acquired characters,' was first proposed by Lamarck in the early 1800s. However, it is incompatible with classical Mendelian genetics, which states that we inherit qualities from our parents through specific DNA sequences they inherited from their parents. We now refer to this type of inheritance as epigenetics, which involves environmentally-induced changes in the structure of DNA and the chromosomes in which DNA resides that are passed on to offspring," said Feig.

Previous research by Feig and his team showed that a relatively brief exposure to an enriched environment in both normal and memory-deficient mice unlocks an otherwise latent biochemical control mechanism that enhances a cellular process in nerve cells called long-term potentiation (LTP), which is known to be involved in learning and memory. This enhancement was detected in pre-adolescent mice but not in adult mice, reflecting the brain's higher plasticity in the young.

Feig concluded that the transgenerational inheritance of the effect of an enriched environment may be a mechanism that has evolved to protect one's offspring from deleterious effects of sensory deprivation, which may be particularly potent in the young and exacerbated in the learning disabled.

Junko Arai and Shaomin Li, first authors, contributed equally to the paper. Dean M. Hartley, PhD, of Rush University Medical Center is also an author.

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>