Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do you know what your mother did when she was young?

04.02.2009
A study reveals that the severity of learning disorders may depend not only on the child's environment but also – remarkably – on the mother's environment when she was young.

The study in memory-deficient mice, published in the February 4 issue of The Journal of Neuroscience, was led by Larry Feig, PhD, professor of biochemistry at Tufts University School of Medicine and member of the biochemistry and neuroscience programs at the Sackler School of Graduate Biomedical Sciences at Tufts University.

The researchers studied the brain function of pre-adolescent mice with a genetically-created defect in memory. When these young mice were enriched by exposure to a stimulating environment – including novel objects, opportunities for social interaction and voluntary exercise – for two weeks, the memory defect was reversed. The work showed that this enhancement was remarkably long-lasting because it was passed on to the offspring even though the offspring had the same genetic mutation and were never exposed to an enriched environment.

Previous research has shown that environmental exposures during pregnancy can affect offspring. "A striking feature of this study is that enrichment took place during pre-adolescence, months before the mice were even fertile, yet the effect reached into the next generation," said Feig.

"The offsprings' improved memory was not the result of better nurturing by mothers who were enriched when they were young. When the offspring were raised by non-enriched foster mothers, the offspring maintained the beneficial effect," said co-author Junko Arai, PhD, postdoctoral associate in Feig's laboratory.

"The effect lasted until adolescence, when it waned, suggesting that this process is designed specifically to aid the young brain," continued Shaomin Li, PhD, MD, co-author, former postdoctoral associate in Feig's laboratory, now at Brigham and Women's Hospital.

"This example of 'inheritance of acquired characters,' was first proposed by Lamarck in the early 1800s. However, it is incompatible with classical Mendelian genetics, which states that we inherit qualities from our parents through specific DNA sequences they inherited from their parents. We now refer to this type of inheritance as epigenetics, which involves environmentally-induced changes in the structure of DNA and the chromosomes in which DNA resides that are passed on to offspring," said Feig.

Previous research by Feig and his team showed that a relatively brief exposure to an enriched environment in both normal and memory-deficient mice unlocks an otherwise latent biochemical control mechanism that enhances a cellular process in nerve cells called long-term potentiation (LTP), which is known to be involved in learning and memory. This enhancement was detected in pre-adolescent mice but not in adult mice, reflecting the brain's higher plasticity in the young.

Feig concluded that the transgenerational inheritance of the effect of an enriched environment may be a mechanism that has evolved to protect one's offspring from deleterious effects of sensory deprivation, which may be particularly potent in the young and exacerbated in the learning disabled.

Junko Arai and Shaomin Li, first authors, contributed equally to the paper. Dean M. Hartley, PhD, of Rush University Medical Center is also an author.

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>