Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


More, bigger wildfires burning western U.S., study shows


Wildfires across the western United States have been getting bigger and more frequent over the last 30 years – a trend that could continue as climate change causes temperatures to rise and drought to become more severe in the coming decades, according to new research.

The number of wildfires over 1,000 acres in size in the region stretching from Nebraska to California increased by a rate of seven fires a year from 1984 to 2011, according to a new study accepted for publication in Geophysical Research Letters, a journal published by the American Geophysical Union.

A satellite image of the 2011 Las Conchas Fire in New Mexico shows the 150,874 acres burned in magenta and the unburned areas in green. This image was created with data from the Monitoring Trends in Burn Severity (MTBS) Project that the authors of a new study used to measure large wildfires in the western United States.

Credit: Philip Dennison/MTBS

The total area these fires burned increased at a rate of nearly 90,000 acres a year – an area the size of Las Vegas, according to the study. Individually, the largest wildfires grew at a rate of 350 acres a year, the new research says.

“We looked at the probability that increases of this magnitude could be random, and in each case it was less than one percent,” said Philip Dennison, an associate professor of geography at the University of Utah in Salt Lake City and lead author of the paper.

The study’s authors used satellite data to measure areas burned by large fires since 1984, and then looked at climate variables, like seasonal temperature and rainfall, during the same time.

The researchers found that most areas that saw increases in fire activity also experienced increases in drought severity during the same time period. They also saw an increase in both fire activity and drought over a range of different ecosystems across the region.

“Twenty eight years is a pretty short period of record, and yet we are seeing statistically significant trends in different wildfire variables—it is striking,” said Max Moritz, a co-author of the study and a fire specialist at the University of California-Berkeley Cooperative Extension.

These trends suggest that large-scale climate changes, rather than local factors, could be driving increases in fire activity, the scientists report. The study stops short of linking the rise in number and size of fires directly to human-caused climate change. However, it says the observed changes in fire activity are in line with long-term, global fire patterns that climate models have projected will occur as temperatures increase and droughts become more severe in the coming decades due to global warming.

“Most of these trends show strong correlations with drought-related conditions which, to a large degree, agree with what we expect from climate change projections,” said Moritz.

A research ecologist not connected to the study, Jeremy Littell of the U.S. Geological Survey (USGS) at the Alaska Climate Science Center in Anchorage, AK, said the trends in fire activity reported in the paper resemble what would be expected from rising temperatures caused by climate change. Other factors, including invasion of non-native species and past fire management practices, are also likely contributing to the observed changes in fire activity, according to the study. Littell and Moritz said increases in fire activity in forested areas could be at least a partial response to decades of fire suppression.

“It could be that our past fire suppression has caught up with us, and an increased area burned is a response of more continuous fuel sources,” Littell said. “It could also be a response to changes in climate, or both.”

To study wildfires across the western U.S., the researchers used data from the Monitoring Trends in Burn Severity Project (MTBS). The project, supported by the U.S. Forest Service and USGS, uses satellite data to measure fires that burned more than 1,000 acres.

While other studies have looked at wildfire records over longer time periods, this is the first study to use high-resolution satellite data to examine wildfire trends over a broad range of landscapes, explained Littell. The researchers divided the region into nine distinct “ecoregions,” areas that had similar climate and vegetation. The ecoregions ranged from forested mountains to warm deserts and grasslands.

Looking at the ecoregions more closely, the authors found that the rise in fire activity was the strongest in certain regions of the United States: across the Rocky Mountains, Sierra Nevada and Arizona- New Mexico mountains; the southwest desert in California, Nevada, Arizona, New Mexico and parts of Texas; and the southern plains across western Texas, Oklahoma, Kansas and eastern Colorado. These are the same regions that would be expected to be most severely affected by changes in climate, said Dennison.

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this article by clicking on this link:

Or, you may order a copy of the final paper by emailing your request to Alexandra Branscombe at Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.


“Large wildfire trends in the western United States, 1984-2011”

Philip E. Dennison: Department of Geography, University of Utah, Salt Lake City, Utah, USA;

Simon C. Brewer: Department of Geography, University of Utah, Salt Lake City, Utah, USA;

James D. Arnold: Department of Geography, University of Utah, Salt Lake City, Utah, USA;

Max A. Moritz: Department of Environmental Science, Policy, and Management, University of California, Berkeley, USA.

Contact information for the authors:
Philip E. Dennison: +1 (801) 742-1539,  

Max A. Moritz,

AGU Contact:

Alexandra Branscombe
+1 (202) 777-7516

University of Utah Contact
Lee Siegel
+1 (801) 581-8993

Peter Weiss | American Geophysical Union
Further information:

Further reports about: AGU Climate change Geography Geophysical Lake Las Conchas Fire activity wildfires

More articles from Studies and Analyses:

nachricht New Formula for Life-Satisfaction
01.10.2015 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Carbon storage in soils: Climate vs. Geology
14.09.2015 | Universität Augsburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>