Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of moose and men

18.05.2011
Study finds removal of roadside salt pools can protect salt-toothed moose from crossing roads

Country roadways can be hazardous for moose and men. According to estimates, millions of vehicles collide with moose, elk and caribou in North America and Europe each year. Moose, in particular, venture to roadsides to lick the salt pools that collect following pavement deicing.

Because moose are the largest animal in the deer family, with males weighing up to 720 kilograms, their salt cravings can pose significant risks to human and vehicle safety. That's why a group of Canadian researchers has investigated ways to encourage moose away from roads.

In a new study, published in the journal Ecological Modelling, lead author Paul D. Grosman reports how the large mammals can adeptly recall the salt pools they visit in previous years. "When the scheduled time came to go to a salt pool, moose moved directly to it with purpose," says Grosman, a graduate student in the Concordia University Department of Geography, Planning and Environment. "Sodium concentration is two or three times higher in roadside salt pools compared to aquatic plants, yet those salt pools increase the probability of moose-vehicle collisions by 80 percent."

To avoid moose-man collisions, the best scenario is to completely remove roadside salt pools, Grosman stresses: "If compensation salt pools are used, they should be located as far as possible from the roads – beyond 500 meters."

Grosman conducted his investigation with Concordia professors Jochen A.G. Jaeger and Pascale M. Biron, as well as colleagues from the Université du Québec à Rimouski and the Ministère des Ressources naturelles et de la Faune du Québec (Quebec Ministry of Natural Resources and Wildlife). The research team focused on a portion of the Laurentides Wildlife Reserve, situated between Quebec City and Saguenay, which features two provincial highways crossing its territory.

Some 47 tagged moose were monitored for three years via global positioning system as they travelled, rested and foraged. A computer-animated control group of 40 moose served as a point of comparison.

The research team tested various scenarios, such as removing salt pools altogether or creating compensation salt pools. Although moose could travel as much as 10 kilometers to drink from salt pools, their road crossings could be reduced by as much as 79 per cent when all road-side salt pools were removed.

"The most effective management strategy is to remove all salt pools, without creating any compensatory ones, and let moose return to foraging for aquatic plants to satisfy their sodium dietary requirement," says Grosman, noting that other costlier security measures include fencing highways or building wildlife underpasses.

From May 24 to May 27, 2011, Jaeger and Grosman will take part in a French language conference on large and small fauna, in Quebec City: "Routes et faune terrestre: De la science aux solutions." For more information, please consult the conference website at www.uqar.ca/routes-faune-terrestre.

Partners in research:

This study was funded by the Ministère des Transports du Québec, the Ministère des Ressources naturelles et de la Faune du Québec, the Université du Québec à Rimouski, the Fonds québécois de la recherche sur la nature et les technologies, Natural Sciences and Engineering Research Council and the J.W. McConnell Graduate Memorial Fellowship.

About the study:

The paper, Trade-off between road avoidance and attraction by roadside salt pools in moose: An agent-based model to assess measures for reducing moose-vehicle collisions," published in the journal Ecological Modelling, was coauthored by Paul D. Grosman, Jochen A.G. Jaeger and Pascale M. Biron of Concordia University, Christian Dussault of the Ministère des Ressources naturelles et de la Faune du Québec and Jean-Pierre Ouellet of the Université du Québec à Rimouski.

Related links:

Cited research: http://bit.ly/lSumfc
Concordia Department of Geography, Planning and Environment: http://gpe.concordia.ca
Ministère des Ressources naturelles et de la Faune du Québec: www.mrnf.gouv.qc.ca

Université du Québec à Rimouski : www.uqar.ca

Source:
Sylvain-Jacques Desjardins
Senior advisor, external communications
Concordia University
Phone: 514-848-2424, ext. 5068
Email: s-j.desjardins@concordia.ca
Twitter: http://twitter.com/concordianews
Concordia news: http://now.concordia.ca

Sylvain-Jacques Desjardins | EurekAlert!
Further information:
http://www.concordia.ca

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>