Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of moose and men

18.05.2011
Study finds removal of roadside salt pools can protect salt-toothed moose from crossing roads

Country roadways can be hazardous for moose and men. According to estimates, millions of vehicles collide with moose, elk and caribou in North America and Europe each year. Moose, in particular, venture to roadsides to lick the salt pools that collect following pavement deicing.

Because moose are the largest animal in the deer family, with males weighing up to 720 kilograms, their salt cravings can pose significant risks to human and vehicle safety. That's why a group of Canadian researchers has investigated ways to encourage moose away from roads.

In a new study, published in the journal Ecological Modelling, lead author Paul D. Grosman reports how the large mammals can adeptly recall the salt pools they visit in previous years. "When the scheduled time came to go to a salt pool, moose moved directly to it with purpose," says Grosman, a graduate student in the Concordia University Department of Geography, Planning and Environment. "Sodium concentration is two or three times higher in roadside salt pools compared to aquatic plants, yet those salt pools increase the probability of moose-vehicle collisions by 80 percent."

To avoid moose-man collisions, the best scenario is to completely remove roadside salt pools, Grosman stresses: "If compensation salt pools are used, they should be located as far as possible from the roads – beyond 500 meters."

Grosman conducted his investigation with Concordia professors Jochen A.G. Jaeger and Pascale M. Biron, as well as colleagues from the Université du Québec à Rimouski and the Ministère des Ressources naturelles et de la Faune du Québec (Quebec Ministry of Natural Resources and Wildlife). The research team focused on a portion of the Laurentides Wildlife Reserve, situated between Quebec City and Saguenay, which features two provincial highways crossing its territory.

Some 47 tagged moose were monitored for three years via global positioning system as they travelled, rested and foraged. A computer-animated control group of 40 moose served as a point of comparison.

The research team tested various scenarios, such as removing salt pools altogether or creating compensation salt pools. Although moose could travel as much as 10 kilometers to drink from salt pools, their road crossings could be reduced by as much as 79 per cent when all road-side salt pools were removed.

"The most effective management strategy is to remove all salt pools, without creating any compensatory ones, and let moose return to foraging for aquatic plants to satisfy their sodium dietary requirement," says Grosman, noting that other costlier security measures include fencing highways or building wildlife underpasses.

From May 24 to May 27, 2011, Jaeger and Grosman will take part in a French language conference on large and small fauna, in Quebec City: "Routes et faune terrestre: De la science aux solutions." For more information, please consult the conference website at www.uqar.ca/routes-faune-terrestre.

Partners in research:

This study was funded by the Ministère des Transports du Québec, the Ministère des Ressources naturelles et de la Faune du Québec, the Université du Québec à Rimouski, the Fonds québécois de la recherche sur la nature et les technologies, Natural Sciences and Engineering Research Council and the J.W. McConnell Graduate Memorial Fellowship.

About the study:

The paper, Trade-off between road avoidance and attraction by roadside salt pools in moose: An agent-based model to assess measures for reducing moose-vehicle collisions," published in the journal Ecological Modelling, was coauthored by Paul D. Grosman, Jochen A.G. Jaeger and Pascale M. Biron of Concordia University, Christian Dussault of the Ministère des Ressources naturelles et de la Faune du Québec and Jean-Pierre Ouellet of the Université du Québec à Rimouski.

Related links:

Cited research: http://bit.ly/lSumfc
Concordia Department of Geography, Planning and Environment: http://gpe.concordia.ca
Ministère des Ressources naturelles et de la Faune du Québec: www.mrnf.gouv.qc.ca

Université du Québec à Rimouski : www.uqar.ca

Source:
Sylvain-Jacques Desjardins
Senior advisor, external communications
Concordia University
Phone: 514-848-2424, ext. 5068
Email: s-j.desjardins@concordia.ca
Twitter: http://twitter.com/concordianews
Concordia news: http://now.concordia.ca

Sylvain-Jacques Desjardins | EurekAlert!
Further information:
http://www.concordia.ca

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>