Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moonstruck primates: Owl monkeys need moonlight as much as a biological clock for nocturnal activity

06.09.2010
An international collaboration led by a University of Pennsylvania anthropologist has shown that environmental factors, like temperature and light, play as much of a role in the activity of traditionally nocturnal monkeys as the circadian rhythm that regulates periods of sleep and wakefulness.

The study also indicates that when the senses relay information on these environmental factors, it can influence daily activity and, in the case of a particular monkey species, may have even produced evolutionary change. It is possible, according to the study results, that changes in sensitivity to specific environmental stimuli may have been an essential key for evolutionary switches between diurnal and nocturnal habits in primates. The study also provides data to better understand all life cycles.

Researchers set out to examine the hypothesis that masking, the chronobiology term for the stimulation or inhibition of activity, was largely caused by changing environmental factors that affected the Azara's owl monkeys' internal timing system, or synchronized circadian rhythm. Put simply, changes in temperature and light make Azara's owl monkeys the only anthropoid primate (monkeys, apes and humans) with a propensity for both early bird and night owl behavior.

The observational nature of field studies has generally limited science's understanding of the mechanisms responsible for the change in activity patterns of these species, whose behavior traditionally takes place in the dimmest of light. Researchers monitored the activity of these wild owl monkeys continually for as long as 18 months using actimeter collars fitted to them.

The results represent the first long-term study of wild primates providing direct evidence for environmental masking, according to researchers.

The data indicate that, although regular daytime activity is represented by the output of a circadian clock, nocturnality is the result of fine-tuned masking of circadian rhythmicity by environmental light and temperature.

Specifically, date showed that nocturnal activity was more consolidated during the relatively warmer months of September to March than during the colder months of April to August, when temperatures in the Argentine province of Formosa regularly fall below 10ºC. Throughout the year, nocturnal activity was higher during full-moon nights than during new-moon ones, and these peaks of nocturnal activity were consistently followed by mornings of low activity. Conversely, new-moon nights were usually followed by mornings of higher diurnal activity than mornings following full-moon nights.

"The behavioral outcome for these owl monkeys is nocturnal activity maximized during relatively warm, moonlit nights," said Eduardo Fernández-Duque, lead investigator and an assistant professor in the Department of Anthropology in Penn's School of Art and Sciences.

"While laboratory studies have pointed to the importance of masking in determining the environmental factors that cause animals to switch from nocturnal activity patterns to diurnal ones or vice versa, our study underscores the importance of masking in determining the daily activity patterns of animals living in the wild. It also suggests that moonlight is a key adaptation for the exploitation of the nocturnal niche by primates," he said.

Conclusive evidence for the direct masking effect of light was provided when three full lunar eclipses completely shadowed moonlight, coinciding with diminished monkey activity. Temperature also negatively masked locomotor activity, and this masking was manifested even under optimal light conditions.

"If there was a biological clock that they were depending on to regulate this activity, you could expect the activity to continue even in the absence of lunar light," said Horacio de la Iglesia of the Department of Biology at the University of Washington.

Primates — even humans — conduct their daily tasks in patterns ranging from nocturnality to diurnality, with a few species showing activity both during day and night. Among anthropoids (monkeys, apes and humans), nocturnality is only present in the Central and South American owl monkey genus Aotus. But unlike other tropical Aotus species, the Azara's owl monkeys (A. azarai) of the subtropics, and this study, have actually switched their activity pattern from strict nocturnality to one that also includes regular daytime activity. The phenomenon led researchers to question the causes of such a behavioral change.

"Harsher climate, food availability and the lack of predators or daytime competition have all been proposed as factors favoring evolutionary switches in primate activity patterns," Fernández-Duque said.

"The lunar day has not been a stable force as much as the solar day to evolutionarily select for a clock," de la Iglesia said. "We still have to prove it in the lab, but the evidence in this paper points to a lack of a lunar biological clock."

The article appears in the current issue of the journal PLoS ONE.

The study was conducted by Fernández-Duque, de la Iglesia and Hans G. Erkert of the University of Tübingen.

The research was funded by the Zoological Society of San Diego, Leakey Foundation, Wenner-Gren Foundation and National Geographic Society. It was authorized by the Ministerio de la Producción, Subsecretaría de Ecología y Recursos Naturales and Dirección de Fauna from Formosa Province.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>