Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moonstruck primates: Owl monkeys need moonlight as much as a biological clock for nocturnal activity

06.09.2010
An international collaboration led by a University of Pennsylvania anthropologist has shown that environmental factors, like temperature and light, play as much of a role in the activity of traditionally nocturnal monkeys as the circadian rhythm that regulates periods of sleep and wakefulness.

The study also indicates that when the senses relay information on these environmental factors, it can influence daily activity and, in the case of a particular monkey species, may have even produced evolutionary change. It is possible, according to the study results, that changes in sensitivity to specific environmental stimuli may have been an essential key for evolutionary switches between diurnal and nocturnal habits in primates. The study also provides data to better understand all life cycles.

Researchers set out to examine the hypothesis that masking, the chronobiology term for the stimulation or inhibition of activity, was largely caused by changing environmental factors that affected the Azara's owl monkeys' internal timing system, or synchronized circadian rhythm. Put simply, changes in temperature and light make Azara's owl monkeys the only anthropoid primate (monkeys, apes and humans) with a propensity for both early bird and night owl behavior.

The observational nature of field studies has generally limited science's understanding of the mechanisms responsible for the change in activity patterns of these species, whose behavior traditionally takes place in the dimmest of light. Researchers monitored the activity of these wild owl monkeys continually for as long as 18 months using actimeter collars fitted to them.

The results represent the first long-term study of wild primates providing direct evidence for environmental masking, according to researchers.

The data indicate that, although regular daytime activity is represented by the output of a circadian clock, nocturnality is the result of fine-tuned masking of circadian rhythmicity by environmental light and temperature.

Specifically, date showed that nocturnal activity was more consolidated during the relatively warmer months of September to March than during the colder months of April to August, when temperatures in the Argentine province of Formosa regularly fall below 10ºC. Throughout the year, nocturnal activity was higher during full-moon nights than during new-moon ones, and these peaks of nocturnal activity were consistently followed by mornings of low activity. Conversely, new-moon nights were usually followed by mornings of higher diurnal activity than mornings following full-moon nights.

"The behavioral outcome for these owl monkeys is nocturnal activity maximized during relatively warm, moonlit nights," said Eduardo Fernández-Duque, lead investigator and an assistant professor in the Department of Anthropology in Penn's School of Art and Sciences.

"While laboratory studies have pointed to the importance of masking in determining the environmental factors that cause animals to switch from nocturnal activity patterns to diurnal ones or vice versa, our study underscores the importance of masking in determining the daily activity patterns of animals living in the wild. It also suggests that moonlight is a key adaptation for the exploitation of the nocturnal niche by primates," he said.

Conclusive evidence for the direct masking effect of light was provided when three full lunar eclipses completely shadowed moonlight, coinciding with diminished monkey activity. Temperature also negatively masked locomotor activity, and this masking was manifested even under optimal light conditions.

"If there was a biological clock that they were depending on to regulate this activity, you could expect the activity to continue even in the absence of lunar light," said Horacio de la Iglesia of the Department of Biology at the University of Washington.

Primates — even humans — conduct their daily tasks in patterns ranging from nocturnality to diurnality, with a few species showing activity both during day and night. Among anthropoids (monkeys, apes and humans), nocturnality is only present in the Central and South American owl monkey genus Aotus. But unlike other tropical Aotus species, the Azara's owl monkeys (A. azarai) of the subtropics, and this study, have actually switched their activity pattern from strict nocturnality to one that also includes regular daytime activity. The phenomenon led researchers to question the causes of such a behavioral change.

"Harsher climate, food availability and the lack of predators or daytime competition have all been proposed as factors favoring evolutionary switches in primate activity patterns," Fernández-Duque said.

"The lunar day has not been a stable force as much as the solar day to evolutionarily select for a clock," de la Iglesia said. "We still have to prove it in the lab, but the evidence in this paper points to a lack of a lunar biological clock."

The article appears in the current issue of the journal PLoS ONE.

The study was conducted by Fernández-Duque, de la Iglesia and Hans G. Erkert of the University of Tübingen.

The research was funded by the Zoological Society of San Diego, Leakey Foundation, Wenner-Gren Foundation and National Geographic Society. It was authorized by the Ministerio de la Producción, Subsecretaría de Ecología y Recursos Naturales and Dirección de Fauna from Formosa Province.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>