Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moonstruck primates: Owl monkeys need moonlight as much as a biological clock for nocturnal activity

06.09.2010
An international collaboration led by a University of Pennsylvania anthropologist has shown that environmental factors, like temperature and light, play as much of a role in the activity of traditionally nocturnal monkeys as the circadian rhythm that regulates periods of sleep and wakefulness.

The study also indicates that when the senses relay information on these environmental factors, it can influence daily activity and, in the case of a particular monkey species, may have even produced evolutionary change. It is possible, according to the study results, that changes in sensitivity to specific environmental stimuli may have been an essential key for evolutionary switches between diurnal and nocturnal habits in primates. The study also provides data to better understand all life cycles.

Researchers set out to examine the hypothesis that masking, the chronobiology term for the stimulation or inhibition of activity, was largely caused by changing environmental factors that affected the Azara's owl monkeys' internal timing system, or synchronized circadian rhythm. Put simply, changes in temperature and light make Azara's owl monkeys the only anthropoid primate (monkeys, apes and humans) with a propensity for both early bird and night owl behavior.

The observational nature of field studies has generally limited science's understanding of the mechanisms responsible for the change in activity patterns of these species, whose behavior traditionally takes place in the dimmest of light. Researchers monitored the activity of these wild owl monkeys continually for as long as 18 months using actimeter collars fitted to them.

The results represent the first long-term study of wild primates providing direct evidence for environmental masking, according to researchers.

The data indicate that, although regular daytime activity is represented by the output of a circadian clock, nocturnality is the result of fine-tuned masking of circadian rhythmicity by environmental light and temperature.

Specifically, date showed that nocturnal activity was more consolidated during the relatively warmer months of September to March than during the colder months of April to August, when temperatures in the Argentine province of Formosa regularly fall below 10ºC. Throughout the year, nocturnal activity was higher during full-moon nights than during new-moon ones, and these peaks of nocturnal activity were consistently followed by mornings of low activity. Conversely, new-moon nights were usually followed by mornings of higher diurnal activity than mornings following full-moon nights.

"The behavioral outcome for these owl monkeys is nocturnal activity maximized during relatively warm, moonlit nights," said Eduardo Fernández-Duque, lead investigator and an assistant professor in the Department of Anthropology in Penn's School of Art and Sciences.

"While laboratory studies have pointed to the importance of masking in determining the environmental factors that cause animals to switch from nocturnal activity patterns to diurnal ones or vice versa, our study underscores the importance of masking in determining the daily activity patterns of animals living in the wild. It also suggests that moonlight is a key adaptation for the exploitation of the nocturnal niche by primates," he said.

Conclusive evidence for the direct masking effect of light was provided when three full lunar eclipses completely shadowed moonlight, coinciding with diminished monkey activity. Temperature also negatively masked locomotor activity, and this masking was manifested even under optimal light conditions.

"If there was a biological clock that they were depending on to regulate this activity, you could expect the activity to continue even in the absence of lunar light," said Horacio de la Iglesia of the Department of Biology at the University of Washington.

Primates — even humans — conduct their daily tasks in patterns ranging from nocturnality to diurnality, with a few species showing activity both during day and night. Among anthropoids (monkeys, apes and humans), nocturnality is only present in the Central and South American owl monkey genus Aotus. But unlike other tropical Aotus species, the Azara's owl monkeys (A. azarai) of the subtropics, and this study, have actually switched their activity pattern from strict nocturnality to one that also includes regular daytime activity. The phenomenon led researchers to question the causes of such a behavioral change.

"Harsher climate, food availability and the lack of predators or daytime competition have all been proposed as factors favoring evolutionary switches in primate activity patterns," Fernández-Duque said.

"The lunar day has not been a stable force as much as the solar day to evolutionarily select for a clock," de la Iglesia said. "We still have to prove it in the lab, but the evidence in this paper points to a lack of a lunar biological clock."

The article appears in the current issue of the journal PLoS ONE.

The study was conducted by Fernández-Duque, de la Iglesia and Hans G. Erkert of the University of Tübingen.

The research was funded by the Zoological Society of San Diego, Leakey Foundation, Wenner-Gren Foundation and National Geographic Society. It was authorized by the Ministerio de la Producción, Subsecretaría de Ecología y Recursos Naturales and Dirección de Fauna from Formosa Province.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>