Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkeys found to wonder what might have been

18.05.2009
Monkeys playing a game similar to "Let's Make A Deal" have revealed that their brains register missed opportunities and learn from their mistakes.

"This is the first evidence that monkeys, like people, have 'would-have, could-have, should-have' thoughts," said Ben Hayden, a researcher at the Duke University Medical Center and lead author of the study published in the journal Science.

The researchers watched individual neurons in a region of the brain called the anterior cingulate cortex (ACC) that monitors the consequences of actions and mediates resulting changes in behavior. The monkeys were making choices that resulted in different amounts of juice as a reward.

Their task was like the TV show "Let's Make a Deal" with the experimenters offering monkeys choices from an array of hidden rewards. During each trial, the monkeys chose from one of eight identical white squares arranged in a circle. A color beneath the white square was revealed and the monkey received the corresponding reward.

Over many weeks, the monkeys were trained to associate a high-value reward with the color green and the low-value rewards with other colors. After receiving a reward, the monkey was also shown the prizes he missed.

What the researchers saw was that neurons in the ACC responded in proportion to the reward -- a greater reward caused a higher response. They also found that these same neurons responded when monkeys saw what they missed. Most of these ACC neurons responded the same way to a real or imagined reward.

To measure how these responses might help the monkey to learn, the researchers kept the high reward in the same position 60 percent of the time, or moved it one position clockwise, so that a monkey could possibly notice and adapt to that pattern. The monkeys chose targets next to potential high-value targets more often than those next to low-value targets, (37.7 percent to 16.7 percent), which suggested that they understood the relationship between the high value target on the current trial and its likely location on the next trial. The monkeys learned the pattern and chose the high value more often than by a chance.

"It is significant to learn that the neurons have a dual role, because the monkey can only adapt his behavior when he gets information on both of those events, real and missed," said Michael Platt, Duke professor of neurobiology and evolutionary anthropology and senior author of the study.

People are much more likely to gamble if they see they could have won big by gambling in the past. Thus the researchers hypothesized that the monkeys would also select the target if it had offered a large reward on the previous trial and the monkey had missed it, and indeed, they observed this pattern. The effect may have reflected an increased willingness to switch to a new target, because the likelihood of switching increased with larger missed rewards, they noted.

"This was not merely a function of the high-value targets holding a positive association for the monkey," Platt said.

The monkeys' ACC neurons signaled missed reward information, and used a coding scheme in the brain that was similar to the coding used to signal real outcomes, Platt said. The researchers suspect that these neurons actually helped the monkeys to make better choices in the future.

John M. Pearson, Ph.D., of Duke Neurobiology was also an author of the paper. The study was supported by a post-doctoral fellowship from the National Institute on Drug Abuse, a Neuroscience Education Institute grant, and the Duke Institute for Brain Sciences.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>