Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular robots can help researchers build more targeted therapeutics

29.07.2013
Study demonstrates technique to create better anti-cancer agents, arthritis drugs, and more

Many drugs such as agents for cancer or autoimmune diseases have nasty side effects because while they kill disease-causing cells, they also affect healthy cells. Now a new study has demonstrated a technique for developing more targeted drugs, by using molecular "robots" to hone in on more specific populations of cells.

"This is a proof of concept study using human cells," said Sergei Rudchenko, Ph.D., director of flow cytometry at Hospital for Special Surgery (HSS) in New York City and a senior author of the study. "The next step is to conduct tests in a mouse model of leukemia." The study, a collaboration between researchers from HSS and Columbia University, is in Advance Online Publication on the website of Nature Nanotechnology.

All cells have many receptors on their cell surface. When antibodies or drugs bind to a receptor, a cell is triggered to perform a certain function or behave in a certain manner. Drugs can target disease-causing cells by binding to a receptor, but in some cases, disease-causing cells do not have unique receptors and therefore drugs also bind to healthy cells and cause "off-target" side effects.

Rituximab (Rituxan, Genentech), for example, is used to treat rheumatoid arthritis, non-Hodgkin's lymphoma and chronic lymphocytic leukemia by docking on CD20 receptors of aberrant cells that are causing the diseases. However, certain immune cells also have CD20 receptors and thus the drug can interfere with a person's ability to mount a fight against infection.

In the new study, scientists have designed molecular robots that can identify multiple receptors on cell surfaces, thereby effectively labeling more specific subpopulations of cells. The molecular robots, called molecular automata, are composed of a mixture of antibodies and short strands of DNA. These short DNA strands, otherwise called oligonucleotides, can be manufactured by researchers in a laboratory with any user-specified sequence.

The researchers conducted their experiments using white blood cells. All white blood cells have CD45 receptors, but only subsets have other receptors such as CD20, CD3, and CD8. In one experiment, HSS researchers created three different molecular robots. Each one had an antibody component of either CD45, CD3 or CD8 and a DNA component. The DNA components of the robots were created to have a high affinity to the DNA components of another robot. DNA can be thought of as a double stranded helix that contains two strands of coded letters, and certain strands have a higher affinity to particular strands than others.

The researchers mixed human blood from healthy donors with their molecular robots. When a molecular robot carrying a CD45 antibody latched on to a CD45 receptor of a cell and a molecular robot carrying a CD3 antibody latched on to a different welcoming receptor of the same cell, the close proximity of the DNA strands from the two robots triggered a cascade reaction, where certain strands were ripped apart and more complementary strands joined together. The result was a unique, single strand of DNA that was displayed only on a cell that had these two receptors.

The addition of a molecular robot carrying a CD8 antibody docking on a cell that expressed CD45, CD3 and CD8 caused this strand to grow. The researchers also showed that the strand could be programmed to fluoresce when exposed to a solution. The robots can essentially label a subpopulation of cells allowing for more targeted therapy. The researchers say the use of increasing numbers of molecular robots will allow researchers to zero in on more and more specific subsets of cell populations. In computer programming language, the molecular robots are performing what is known as an "if yes, then proceed to X function."

"The automata trigger the growth of more strongly complementary oligonucleotides. The reactions occur fast. In about 15 minutes, we can label cells," said Maria Rudchenko, M.S., the first author of the paper and a research associate at Hospital for Special Surgery. In terms of clinical applications, researchers could either label cells that they want to target or cells they want to avoid.

"This is a proof of concept study that it works in human whole blood," said Dr. Rudchenko. "The next step is to test it in animals."

If molecular robots work in studies with mice and eventually human clinical trials, the researches say there are a wide range of possible clinical applications. For example, cancer patients could benefit from more targeted chemotherapeutics. Drugs for autoimmune diseases could be more specifically tailored to impact disease-causing autoimmune cells and not the immune cells that people need to fight infection.

The study was funded, in part, by the National Institutes of Health, National Science Foundation, and the Lymphoma and Leukemia Foundation.

Other researchers involved with the study are Alesia Dechkovskaia from Hospital for Special Surgery, and Steven Taylor, Ph.D., Payal Pallavi, B.A., Safana Khan, Vincent Butler, M.D., and Milan Stojanovic, Ph.D., from Columbia University. Dr. Stojanovich is also a senior author.

About Hospital for Special Surgery

Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 1 in orthopedics, No. 4 in rheumatology and No. 5 in geriatrics by U.S. News & World Report (2013-14), and is the first hospital in New York State to receive Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center three consecutive times. HSS has one of the lowest infection rates in the country. From 2007 to 2012, HSS has been a recipient of the HealthGrades Joint Replacement Excellence Award. HSS is a member of the NewYork-Presbyterian Healthcare System and an affiliate of Weill Cornell Medical College and as such all Hospital for Special Surgery medical staff are faculty of Weill Cornell. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City and online at http://www.hss.edu.

For more information contact:

Phyllis Fisher
212-606-1197
Phyllis.Fisher@gmail.com

Phyllis Fisher | EurekAlert!
Further information:
http://www.hss.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>