Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moldy homes a serious risk for severe asthma attacks in some

24.06.2010
Exposure to high levels of fungus may increase the risk of severe asthma attacks among people with certain chitinase gene variants, according to a study from Harvard Medical School, Harvard Pilgrim Health Care Institute and Brigham and Women's Hospital.

The research was published online on the American Thoracic Society's journal Web site ahead of the print edition of the American Journal of Respiratory and Critical Care Medicine.

"We found that the interaction between environmental mold exposure and certain variants of chitinase genes were positively associated with severe asthma exacerbations requiring hospitalization," said lead researcher, Ann Wu, assistant professor at the at Harvard Medical School and Harvard Pilgrim Health Care Institute.

Chitinases break down chitin, a component in many fungi, and are induced during allergic inflammation. It has been suggested by past research that these could be biomarkers of inflammation. Moreover, certain variants of chitinase genes are known to be expressed more heavily in people with asthma.

The researchers used data from the Childhood Asthma Management Program, a multicenter trial that enrolled children between the ages of 5 and 12 with mild to moderate persistent asthma. Mold measures were taken in the subjects' homes at the beginning of the study, and homes were classified as having greater or less than 25,000 mold colonies per gram of household dust.

"This level of mold in dust is high for a residential environment. However, it is not likely to be easily recognized. Studies have shown that homes that have problems with dampness (e.g. visible mold on walls/ceilings, water collection in basement, etc.) have higher levels of mold, but there is no specific level that is currently accepted to 'cause' problems," said Dr. Wu.

Finally, using blood samples, the researchers genotyped all the single nucleotide polymorphisms—SNPs, or variants in which just a single "letter" of the DNA code in a given gene is different—of chitinase genes and a chitinase-like gene within the study population.

They then analyzed the appearance of different variations of chitinase genes with level of mold exposure and number of hospital visits from severe asthma exacerbations. They found that certain variants of the chitinase gene CHIT1, in conjunction with high mold exposure, were associated with increased risk of severe asthma attacks.

"Our results support increasing evidence that CHIT1, which is primarily expressed in the lung, plays an important role in the pathophysiology of asthma in the proper environmental context of exposure to chitin, which was approximated by mold levels," said Dr. Wu. "To our knowledge this was the first study to examine the effect of mold levels on the association of SNPs in the genes of both chitinases and chitinase-like proteins with asthma and allergy-related phenotypes."

Chitinases may play a role in future targets for asthma therapy. Inhibition of chitinase enzymatic activity has been demonstrated to prevent hyper-responsiveness and inflammation in mice. It is plausible, said Wu, that therapeutics designed to block chitinase enzyme activity may prevent hyper-responsiveness and inflammation related to asthma.

"Future research should focus on expanding and replicating these findings," she said. "The focus should be on mechanisms of chitinases and chitinase-like proteins in allergic inflammation. Additionally, finding other genes that may interact with mold exposure will also be important. We plan to find a population to replicate these findings. Additionally, we are preparing to perform a Genome-Wide Association Study in this same population to identify other genes that may interact with mold exposure."

Keely Savoie | EurekAlert!
Further information:
http://www.thoracic.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>