Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moldy homes a serious risk for severe asthma attacks in some

24.06.2010
Exposure to high levels of fungus may increase the risk of severe asthma attacks among people with certain chitinase gene variants, according to a study from Harvard Medical School, Harvard Pilgrim Health Care Institute and Brigham and Women's Hospital.

The research was published online on the American Thoracic Society's journal Web site ahead of the print edition of the American Journal of Respiratory and Critical Care Medicine.

"We found that the interaction between environmental mold exposure and certain variants of chitinase genes were positively associated with severe asthma exacerbations requiring hospitalization," said lead researcher, Ann Wu, assistant professor at the at Harvard Medical School and Harvard Pilgrim Health Care Institute.

Chitinases break down chitin, a component in many fungi, and are induced during allergic inflammation. It has been suggested by past research that these could be biomarkers of inflammation. Moreover, certain variants of chitinase genes are known to be expressed more heavily in people with asthma.

The researchers used data from the Childhood Asthma Management Program, a multicenter trial that enrolled children between the ages of 5 and 12 with mild to moderate persistent asthma. Mold measures were taken in the subjects' homes at the beginning of the study, and homes were classified as having greater or less than 25,000 mold colonies per gram of household dust.

"This level of mold in dust is high for a residential environment. However, it is not likely to be easily recognized. Studies have shown that homes that have problems with dampness (e.g. visible mold on walls/ceilings, water collection in basement, etc.) have higher levels of mold, but there is no specific level that is currently accepted to 'cause' problems," said Dr. Wu.

Finally, using blood samples, the researchers genotyped all the single nucleotide polymorphisms—SNPs, or variants in which just a single "letter" of the DNA code in a given gene is different—of chitinase genes and a chitinase-like gene within the study population.

They then analyzed the appearance of different variations of chitinase genes with level of mold exposure and number of hospital visits from severe asthma exacerbations. They found that certain variants of the chitinase gene CHIT1, in conjunction with high mold exposure, were associated with increased risk of severe asthma attacks.

"Our results support increasing evidence that CHIT1, which is primarily expressed in the lung, plays an important role in the pathophysiology of asthma in the proper environmental context of exposure to chitin, which was approximated by mold levels," said Dr. Wu. "To our knowledge this was the first study to examine the effect of mold levels on the association of SNPs in the genes of both chitinases and chitinase-like proteins with asthma and allergy-related phenotypes."

Chitinases may play a role in future targets for asthma therapy. Inhibition of chitinase enzymatic activity has been demonstrated to prevent hyper-responsiveness and inflammation in mice. It is plausible, said Wu, that therapeutics designed to block chitinase enzyme activity may prevent hyper-responsiveness and inflammation related to asthma.

"Future research should focus on expanding and replicating these findings," she said. "The focus should be on mechanisms of chitinases and chitinase-like proteins in allergic inflammation. Additionally, finding other genes that may interact with mold exposure will also be important. We plan to find a population to replicate these findings. Additionally, we are preparing to perform a Genome-Wide Association Study in this same population to identify other genes that may interact with mold exposure."

Keely Savoie | EurekAlert!
Further information:
http://www.thoracic.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>