Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Moderate to Intense Exercise May Protect the Brain

Older people who regularly exercise at a moderate to intense level may be less likely to develop the small brain lesions, sometimes referred to as “silent strokes,” that are the first sign of cerebrovascular disease, according to a new study published in the June 8, 2011, online issue of Neurology®, the medical journal of the American Academy of Neurology (AAN).

“These ‘silent strokes’ are more significant than the name implies, because they have been associated with an increased risk of falls and impaired mobility, memory problems and even dementia, as well as stroke,” said study author Joshua Z. Willey, MD, MS, of Columbia University in New York and a member of the American Academy of Neurology. “Encouraging older people to take part in moderate to intense exercise may be an important strategy for keeping their brains healthy.”

The study involved 1,238 people who had never had a stroke. Participants completed a questionnaire about how often and how intensely they exercised at the beginning of the study and then had MRI scans of their brains an average of six years later, when they were an average of 70 years old.

A total of 43 percent of the participants reported that they had no regular exercise; 36 percent engaged in regular light exercise, such as golf, walking, bowling or dancing; and 21 percent engaged in regular moderate to intense exercise, such as hiking, tennis, swimming, biking, jogging or racquetball.

The brain scans showed that 197 of the participants, or 16 percent, had small brain lesions, or infarcts, called silent strokes. People who engaged in moderate to intense exercise were 40 percent less likely to have the silent strokes than people who did no regular exercise. The results remained the same after the researchers took into account other vascular risk factors such as high blood pressure, high cholesterol and smoking. There was no difference between those who engaged in light exercise and those who did not exercise.

“Of course, light exercise has many other beneficial effects, and these results should not discourage people from doing light exercise,” Willey said.

The study also showed that the benefit of moderate to intense exercise on brain health was not apparent for people with Medicaid or no health insurance. People who exercised regularly at a moderate to intense level who had Medicaid or no health insurance were no less likely to have silent infarcts than people who did no regular exercise. “It may be that the overall life difficulties for people with no insurance or on Medicaid lessens the protective effect of regular exercise,” Willey said.

The study was supported by the National Institute of Neurological Disorders and Stroke.

The American Academy of Neurology, an association of more than 24,000 neurologists and neuroscience professionals, is dedicated to promoting the highest quality patient-centered neurologic care. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as Alzheimer’s disease, stroke, migraine, multiple sclerosis, brain injury, Parkinson’s disease and epilepsy.

For more information about the American Academy of Neurology, visit


Rachel L. Seroka | American Academy of Neurology
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>