Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Modeling study identifies characteristics of high elk-use areas in western Oregon, Washington

Findings will be used to update regional elk habitat management strategies

The availability of highly nutritious forage is one of four factors linked to the presence of elk populations in western Oregon and Washington, according to a modeling study recently completed by scientists from the U.S. Forest Service's Pacific Northwest (PNW) Research Station. Findings from the two-year study will be used to update land management planning for the ecologically and economically important ungulate in the region.

"Habitat models like the one we developed are critical to managing elk populations, particularly since current management practices are based on decades-old research and are in the process of being updated to reflect new science," said Mary Rowland, a wildlife biologist at the station's La Grande Forestry and Range Sciences Laboratory and one of the study's principal investigators. "Findings from our modeling go a long way in explaining where in western Oregon and Washington elk populations are most likely to thrive."

Rowland and colleagues used a nutrition model based on elk grazing trials that predicts dietary digestible energy (DDE), a variable that represents nutrition levels based on plant community types. The model was developed by John and Rachel Cook, biologists with the National Council for Air and Stream Improvement, and measures DDE during the summer—a crucial time for elk that ultimately impacts their survival and reproduction rates. The model can also be used to generate maps depicting areas of the landscape that offer the greatest nutritional resources and the effects of forest management on nutrition levels.

The scientists then used DDE predictions in combination with over 50 additional model variables to investigate actual patterns of elk habitat use in western Oregon and Washington. By using radiotelemetry locations of elk, primarily from tribal sources, from five years across three study areas, Rowland and her colleagues identified four variables that consistently provided the most support for observed habitat selection patterns of elk—DDE, distance to roads open to public access, percent slope, and distance to cover-forage edge. The new elk habitat model was then validated by comparing its output to radiotelemetry observations from five additional study sites.

"Our results were extremely encouraging, with close matches seen between predicted elk use from the model and locations of elk in the study areas," said Mike Wisdom, a PNW Station research wildlife biologist, also in La Grande, who initiated the project. "This information can help set goals for changing elk use in certain areas and guiding management prescriptions for elk habitat."

This fall, biologists with the Forest Service's Pacific Northwest Region, the Oregon and Washington State Office of the Bureau of Land Management, Oregon Department of Fish and Wildlife, Washington Department of Fish and Wildlife, and the Muckleshoot Indian Tribe will be testing the elk habitat model and providing feedback to the researchers.

Rowland and her colleagues are planning to expand their modeling effort to southwest Oregon beginning next year.

The PNW Research Station is headquartered in Portland, Oregon. It has 11 laboratories and centers located in Alaska, Oregon, and Washington and about 425 employees.

Yasmeen Sands | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>