Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling study identifies characteristics of high elk-use areas in western Oregon, Washington

22.10.2010
Findings will be used to update regional elk habitat management strategies

The availability of highly nutritious forage is one of four factors linked to the presence of elk populations in western Oregon and Washington, according to a modeling study recently completed by scientists from the U.S. Forest Service's Pacific Northwest (PNW) Research Station. Findings from the two-year study will be used to update land management planning for the ecologically and economically important ungulate in the region.

"Habitat models like the one we developed are critical to managing elk populations, particularly since current management practices are based on decades-old research and are in the process of being updated to reflect new science," said Mary Rowland, a wildlife biologist at the station's La Grande Forestry and Range Sciences Laboratory and one of the study's principal investigators. "Findings from our modeling go a long way in explaining where in western Oregon and Washington elk populations are most likely to thrive."

Rowland and colleagues used a nutrition model based on elk grazing trials that predicts dietary digestible energy (DDE), a variable that represents nutrition levels based on plant community types. The model was developed by John and Rachel Cook, biologists with the National Council for Air and Stream Improvement, and measures DDE during the summer—a crucial time for elk that ultimately impacts their survival and reproduction rates. The model can also be used to generate maps depicting areas of the landscape that offer the greatest nutritional resources and the effects of forest management on nutrition levels.

The scientists then used DDE predictions in combination with over 50 additional model variables to investigate actual patterns of elk habitat use in western Oregon and Washington. By using radiotelemetry locations of elk, primarily from tribal sources, from five years across three study areas, Rowland and her colleagues identified four variables that consistently provided the most support for observed habitat selection patterns of elk—DDE, distance to roads open to public access, percent slope, and distance to cover-forage edge. The new elk habitat model was then validated by comparing its output to radiotelemetry observations from five additional study sites.

"Our results were extremely encouraging, with close matches seen between predicted elk use from the model and locations of elk in the study areas," said Mike Wisdom, a PNW Station research wildlife biologist, also in La Grande, who initiated the project. "This information can help set goals for changing elk use in certain areas and guiding management prescriptions for elk habitat."

This fall, biologists with the Forest Service's Pacific Northwest Region, the Oregon and Washington State Office of the Bureau of Land Management, Oregon Department of Fish and Wildlife, Washington Department of Fish and Wildlife, and the Muckleshoot Indian Tribe will be testing the elk habitat model and providing feedback to the researchers.

Rowland and her colleagues are planning to expand their modeling effort to southwest Oregon beginning next year.

The PNW Research Station is headquartered in Portland, Oregon. It has 11 laboratories and centers located in Alaska, Oregon, and Washington and about 425 employees.

Yasmeen Sands | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>