Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling reveals significant climatic impacts of megapolitan expansion

13.08.2012
According to the United Nations' 2011 Revision of World Urbanization Prospects, global urban population is expected to gain more than 2.5 billion new inhabitants through 2050.

Such sharp increases in the number of urban dwellers will require considerable conversion of natural to urban landscapes, resulting in newly developing and expanding megapolitan areas. Could climate impacts arising from built environment growth pose additional concerns for urban residents also expected to deal with impacts resulting from global climate change?

In the first study to attempt to quantify the impact of rapidly expanding megapolitan areas on regional climate, a team of researchers from Arizona State University (ASU) and the National Center for Atmospheric Research has established that local maximum summertime warming resulting from projected expansion of the urban Sun Corridor could approach 4 degrees Celsius. This finding establishes that this factor can be as important as warming due to increased levels of greenhouse gases. Their results are reported in the early online edition (Aug. 12) of the journal Nature Climate Change.

Arizona's Sun Corridor is the most rapidly growing megapolitan area in the United States. Nestled in a semi-arid environment, it is composed of four metropolitan areas: Phoenix, Tucson, Prescott and Nogales. With a population projection expected to exceed 9 million people by 2040, the developing Sun Corridor megapolitan provides a unique opportunity to diagnose the influence of large-scale urbanization on climate, and its relation to global climate change.

"We posed a fundamental set of questions in our study, examining the different scenarios of Sun Corridor expansion through mid-century. We asked what are the summertime regional climate implications, and how do these impacts compare to climate change resulting from increased emissions of greenhouse gases," says Matei Georgescu, lead author and assistant professor in the School of Geographical Sciences and Urban Planning in ASU's College of Liberal Arts and Sciences.

The authors utilized projections of Sun Corridor growth by 2050 developed by the Maricopa Association of Governments (MAG), the regional agency for metropolitan Phoenix provides long-range and sustainably oriented planning. Incorporating maximum and minimum growth scenarios into a state-of-the-art regional climate model, the researchers compared these impacts with experiments using an urban representation of modern-day central Arizona. Their conclusions indicate substantial summertime warming.

"The worst case expansion scenario we utilized led to local maximum summer warming of nearly 4 degrees Celsius. In the best case scenario, where Sun Corridor expansion is both more constrained and urban land use density is lower, our results still indicate considerable local warming, up to about 2 degrees Celsius," Georgescu said.

An additional experiment was conducted to examine an adaptation where all of the buildings were topped by highly reflective white or "cool" roofs.

"Incorporating cool roofs alleviated summertime warming substantially, reducing the maximum local warming by about half," Georgescu said. "But, another consequence of such large-scale urbanization and this adaptation approach include effects on the region's hydroclimate."

The cool roofs, like the maximum-growth scenario without this adaptation approach, further reduce evapotranspiration – water that evaporates from the soil and transpires from plants. Ultimately, comparison of summertime warming resulting from Sun Corridor expansion to greenhouse-gas-induced summertime climate change shows that through mid-century the maximum urbanization scenario leads to greater warming than climate change.

However, pinning precise figures on the relative contribution of each effector is difficult, the authors state.

"The actual contribution of urban warming relative to summertime climate change warming depends critically on the path of urbanization, the conversion of natural to urban landscapes, and the degree to which we continue to emit greenhouse gases," said Alex Mahalov, a co-author and principal investigator of the National Science Foundation grant, "Multiscale Modeling of Urban Atmospheres in a Changing Climate," which supported the research.

"As well as providing insights for sustainable growth of the Sun Corridor and other rapidly expanding megapolitan areas, this research offers one way to quantify and understand the relative impacts of urbanization and global warming,"said Mahalov, the Wilhoit Foundation Dean’s Distinguished Professor in ASU’s School of Mathematical and Statistical Sciences.

The group conducted their numerical simulations using an "ensemble-based" approach. By modifying their model's initial conditions and repeating their simulations a number of times, they were able to test the robustness of their results. In all, nearly half of a century of simulations were conducted.

"By incorporating differing Sun Corridor growth scenarios into a high performance computing modeling framework with MAG projections, we quantified direct hydroclimatic impacts due to anticipated expansion of the built environment," added Mahalov. Simulations were conducted at ASU's Advanced Computing Center (A2C2).

Georgescu said that one take-home message from this study is that the incorporation of sustainable policies need to extend beyond just greenhouse gas emissions. He also stressed the importance of extending adaptation strategies beyond the focus on mere average temperature.

"Truly sustainable adaptation, from an environmental standpoint, must extend to the entire climate system, including impacts on temperature and hydrology," he said.

The study's co-authors also included Mohamed Moustaoui, an associate professor in ASU's School of Mathematical and Statistical Sciences, and Jimy Dudhia, a project scientist in the Mesoscale and Microscale Meteorology Division at the National Center for Atmospheric Research. All three ASU co-authors are affiliated with ASU's College of Liberal Arts and Sciences and the Global Institute of Sustainability.

Source: Matei Georgescu, (480) 965-7533; Matei.Georgescu@asu.edu

Media contacts: Skip Derra, (480) 965-4823; skip.derra@asu.edu
Barbara Trapido-Lurie, (480) 965-7449; Barbara.Trapido-Lurie@asu.edu

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>