Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Model Developed to Estimate Radiation Skin Doses during CT Guided Interventional Procedures

05.11.2008
A new model that would allow interventional radiologists (radiologists who specialize in fine needle aspiration, fine needle biopsy and radiofrequency ablation) to better estimate patient radiation skin doses during CT guided interventional procedures has been developed according to a study performed at the Agios Savvas and Konstantopoulio Hospitals in Athens, Greece.

“It is clear that skin doses in CT guided interventional procedures can become very high. Even for skin doses around 1 Gy, the prospect of repeating a procedure makes the determination of peak skin dose crucial for avoiding radiation injuries,” said Ioannis A. Tsalafoutas, PhD, Virginia Tsapaki, PhD, Charikleia Triantopoulou, MD, John Papailiou MD, Christina Pouli, MD, Virginia Kouridou, MSc, and Ioanna Fagadaki, MD, authors of the study.

The theoretical model that was developed “considers the skin dose resulting from each CT slice, utilizing data that is already stored along with CT images. The skin doses calculated with this model were compared with those measured using films positioned under patients that underwent CT guided interventional procedures. The results indicate that peak skin doses can be estimated accurately using the new theoretical model that provides a base for skin dose estimation in real time,” said Dr. Tsalafoutas and colleagues.

“It is important for CT interventional radiologists to be able to monitor the radiation skin dose to their patient and optimize their techniques, so as to avoid skin injuries and minimize the probability of radiation induced carcinogenesis. The first step toward this goal is to understand the risk, to quantify it and to identify factors that affect it in order to be able to reduce it,” said Dr. Tsalafoutas and colleagues.

The theoretical method developed by Dr. Tsalafoutas and his colleagues could possibly lead to the development of specialized software for skin estimation in real time which “would be a significant technological advancement from the aspect of radiation protection,” said Dr. Tsalafoutas and colleagues.

This study appears in the November issue of the American Journal of Roentgenology. For a copy of the full study, please contact Heather Curry via email at hcurry@arrs.org.

About ARRS

The American Roentgen Ray Society (ARRS) was founded in 1900 and is the oldest radiology society in the United States. Its monthly journal, the American Journal of Roentgenology, began publication in 1906. Radiologists from all over the world attend the ARRS annual meeting to participate in instructional courses, scientific paper presentations and scientific and commercial exhibits related to the field of radiology. The Society is named after the first Nobel Laureate in Physics, Wilhelm Röentgen, who discovered the x-ray in 1895.

Heather Curry | EurekAlert!
Further information:
http://www.arrs.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>