Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobile phone data helps combat malaria

14.05.2014

An international study led by the University of Southampton and the National Vector-borne Diseases Control Programme (NVDCP) in Namibia has used mobile phone data to help combat malaria more effectively.

The study used anonymised mobile records to measure population movements within Namibia in Africa over the period of a year (2010-11). By combining this data with information about diagnosed cases of malaria, topography and climate, the researchers have been able to identify geographical 'hotspots' of the disease and design targeted plans for its elimination.

Geographer at the University of Southampton Dr Andy Tatem says: "Understanding the movement of people is crucial in eliminating malaria. Attempts to clear the disease from an area can be ruined by highly mobile populations quickly reintroducing the parasite which causes malaria.

"If we are to eliminate this disease, we need to deploy the right measures in the right place, but figures on human movement patterns in endemic regions are hard to come by and often restricted to local travel surveys and census-based migration data.

... more about:
»Health »MTC »Namibia »malaria »movement »proliferation »topography

"Our study demonstrates that the rapid global proliferation of mobile phones now provides us with an opportunity to study the movement of people, using sample sizes running in to millions. This data, combined with disease case based mapping, can help us plan where and how to intervene."

Twelve months of anonymised Call Data Records (CDRs) were provided by service provider Mobile Telecommunications Limited (MTC) to the researchers (see note 1 for a full list of partners) – representing nine billion communications from 1.19 million unique subscribers, around 52 per cent of the population of Namibia. Aggregated movements of mobile users between urban areas and urban and rural areas were analysed in conjunction with data based on rapid diagnostic testing (RDT) of malaria and information on the climate, environment and topography of the country.

The results of the study help the NVDCP in Namibia improve their targeting of malaria interventions to communities most at risk. Specifically they have helped with the targeting of insecticide-treated bed net distributions in the Omusati, Kavango and Zambezi regions in 2013, and will continue to help the NVDCP prepare for a large-scale net distribution in 2014 and deployment of community health workers.

Dr Tatem comments: "The importation of malaria from outside a country will always be a crucial focus of disease control programmes, but movement of the disease within countries is also of huge significance. Understanding the human element of this movement should be a critical component when designing elimination strategies – to help target resources most efficiently.

"The use of mobile phone data is one example of how new technologies are overcoming past problems of quantifying and gaining a better understanding of human movement patterns in relation to disease control."

###

The paper Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning is published in the Malaria Journal and can be found at: http://www.malariajournal.com/content/13/1/52.

Notes for editors:

1) Full list of study partners:

Department of Geography and Environment, University of Southampton, UK
http://www.southampton.ac.uk/geography

Flowminder Foundation, 17177 Stockholm, Sweden
http://www.flowminder.org

Fogarty International Center, National Institutes of Health, Bethesda, USA
http://www.fic.nih.gov/Pages/Default.aspx

Department of Geography, University of Florida, Gainesville, USA
http://geog.ufl.edu/

Emerging Pathogens Institute, University of Florida, Gainesville, USA
http://epi.ufl.edu/

National Vector-borne Disease Control Program, Windhoek, Namibia
https://extranet.sadc.int/files/9913/1711/8965/10-1314-Malaria_Strategic_Plan.pdf

Department of Computer Science, University of Florida, Gainesville, USA
http://www.cise.ufl.edu

Clinton Health Access Initiative, Boston, USA
http://www.clintonhealthaccess.org

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
http://www.jhsph.edu/departments/epidemiology

Mobile Telecommunications Limited, Windhoek, Namibia
http://www.mtc.com.na/home

2) The University of Southampton is a leading UK teaching and research institution with a global reputation for leading-edge research and scholarship across a wide range of subjects in engineering, science, social sciences, health and humanities.

With over 23,000 students, around 5000 staff, and an annual turnover well in excess of £435 million, the University of Southampton is acknowledged as one of the country's top institutions for engineering, computer science and medicine. We combine academic excellence with an innovative and entrepreneurial approach to research, supporting a culture that engages and challenges students and staff in their pursuit of learning. http://www.southampton.ac.uk

3) For more information about Geography at the University of Southampton visit: http://www.southampton.ac.uk/geography

Peter Franklin | Eurek Alert!

Further reports about: Health MTC Namibia malaria movement proliferation topography

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>