Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mixed-handed children more likely to have mental health, language and scholastic problems

25.01.2010
Children who are mixed-handed, or ambidextrous, are more likely to have mental health, language and scholastic problems in childhood than right- or left-handed children, according to a new study published today in the journal Pediatrics.

The researchers behind the study, from Imperial College London and other European institutions, suggest that their findings may help teachers and health professionals to identify children who are particularly at risk of developing certain problems.

Around one in every 100 people is mixed-handed. The study looked at nearly 8,000 children, 87 of whom were mixed-handed, and found that mixed-handed 7 and 8-year old children were twice as likely as their right-handed peers to have difficulties with language and to perform poorly in school.

When they reached 15 or 16, mixed-handed adolescents were also at twice the risk of having symptoms of attention deficit/hyperactivity disorder (ADHD). They were also likely to have more severe symptoms of ADHD than their right-handed counterparts. It is estimated that ADHD affects between 3 to 9 percent of school-aged children and young people.

The adolescents also reported having greater difficulties with language than those who were left- or right-handed. This is in line with earlier studies that have linked mixed-handedness with dyslexia.

Little is known about what makes people mixed-handed but it is known that handedness is linked to the hemispheres in the brain. Previous research has shown that where a person's natural preference is for using their right hand, the left hemisphere of their brain is more dominant.

Some researchers have suggested that mixed-handedness indicates that the pattern of dominance is not that which is typically seen in most people, i.e. it is less clear that one hemisphere is dominant over the other. One study has suggested that ADHD is linked to having a weaker function in the right hemisphere of the brain, which could help explain why some of the mixed-handed students in today's study had symptoms of ADHD.

Dr Alina Rodriguez, the lead researcher on the study from the School of Public Health at Imperial College London, said: "Mixed-handedness is intriguing – we don't know why some people prefer to make use of both hands when most people use only one. Our study is interesting because it suggests that some children who are mixed handed experience greater difficulties in school than their left- and right-handed friends. We think that there are differences in the brain that might explain these difficulties, but there needs to be more research.

"Because mixed-handedness is such a rare condition, the number of mixed-handed children we were able to study was relatively small, but our results are statistically and clinically significant. That said, our results should not be taken to mean that all children who are mixed-handed will have problems at school or develop ADHD. We found that mixed-handed children and adolescents were at a higher risk of having certain problems, but we'd like to stress that most of the mixed-handed children we followed didn't have any of these difficulties," added Dr Rodriguez.

To study the effects of mixed-handedness, Dr Rodriguez and her colleagues looked at prospective data from a cohort of 7,871 children from Northern Finland. Using questionnaires, the researchers assessed the children when they reached 7 to 8 years of age and again at 15 to 16 years of age.

When the children were aged 8, the researchers asked parents and teachers to assess their linguistic abilities, scholastic performance and behaviour. The teachers reported whether children had difficulties in reading, writing or mathematics and rated the children's academic performance as below average, average or above average.

The adolescents' parents and the adolescents themselves completed follow-up questionnaires when they were 15-16 years of age, with the children evaluating their school performance in relation to their peers and the parents assessing their children's behaviour, on a questionnaire that is widely used to identify ADHD symptoms.

The research was funded by the Academy of Finland; Sigrid Juselius Foundation, Finland; Thule Institute, University of Oulu, Finland; and the National Institute of Mental Health. Dr Rodriguez received support from VINNMER.

Laura Gallagher | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>