Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT research: Study finds room to store CO2 underground

20.03.2012
New MIT analysis shows there's enough room to safely store at least a century's worth of US fossil fuel emissions

A new study by researchers at MIT shows that there is enough capacity in deep saline aquifers in the United States to store at least a century's worth of carbon dioxide emissions from the nation's coal-fired powerplants. Though questions remain about the economics of systems to capture and store such gases, this study addresses a major issue that has overshadowed such proposals.

The MIT team's analysis — led by Ruben Juanes, the ARCO Associate Professor in Energy Studies in the Department of Civil and Environmental Engineering, and part of the doctoral thesis work of graduate students Christopher MacMinn PhD '12 and Michael Szulczewski — is published this week in the Proceedings of the National Academy of Sciences.

Coal-burning powerplants account for about 40 percent of worldwide carbon emissions, so climate change "will not be addressed unless we address carbon dioxide emissions from coal plants," Juanes says. "We should do many different things" such as developing new, cleaner alternatives, he says, "but one thing that's not going away is coal," because it's such a cheap and widely available source of power.

Efforts to curb greenhouse gases have largely focused on the search for practical, economical sources of clean energy, such as wind or solar power. But human emissions are now so vast that many analysts think it's unlikely that these technologies alone can solve the problem. Some have proposed systems for capturing emissions — mostly carbon dioxide from the burning of fossil fuels — then compressing and storing the waste in deep geological formations. This approach is known as carbon capture and storage, or CCS.

One of the most promising places to store the gas is in deep saline aquifers: those more than half a mile below the surface, far below the freshwater sources used for human consumption and agriculture. But estimates of the capacity of such formations in the United States have ranged from enough to store just a few years' worth of coal-plant emissions up to many thousands of years' worth.

The reason for the huge disparity in estimates is twofold. First, because deep saline aquifers have no commercial value, there has been little exploration to determine their extent. Second, the fluid dynamics of how concentrated, liquefied carbon dioxide would spread through such formations is very complex and hard to model. Most analyses have simply estimated the overall volume of the formations, without considering the dynamics of how the CO2 would infiltrate them.

The MIT team modeled how the carbon dioxide would percolate through the rock, accounting not only for the ultimate capacity of the formations but the rate of injection that could be sustained over time. "The key is capturing the essential physics of the problem," Szulczewski says, "but simplifying it enough so it could be applied to the entire country." That meant looking at the details of trapping mechanisms in the porous rock at a scale of microns, then applying that understanding to formations that span hundreds of miles.

"We started with the full complicated set of equations for the fluid flow, and then simplified it," MacMinn says. Other estimates have tended to oversimplify the problem, "missing some of the nuances of the physics," he says. While this analysis focused on the United States, MacMinn says similar storage capacities likely exist around the world.

Howard Herzog, a senior research engineer with the MIT Energy Initiative and a co-author of the PNAS paper, says this study "demonstrates that the rate of injection of CO2 into a reservoir is a critical parameter in making storage estimates."

When liquefied carbon dioxide is dissolved in salty water, the resulting fluid is denser than either of the constituents, so it naturally sinks. It's a slow process, but "once the carbon dioxide is dissolved, you've won the game," Juanes says, because the dense, heavy mixture would almost certainly never escape back to the atmosphere.

While this study did not address the cost of CCS systems, many analysts have concluded that they could add 15 to 30 percent to the cost of coal-generated electricity, and would not be viable unless a carbon tax or a limit on carbon emissions was put in place.

While uncertainties remain, "I really think CCS has a role to play," Juanes says. "It's not an ultimate salvation, it's a bridge, but it may be essential because it can really address the emissions from coal and natural gas."

The research was supported by grants from the U.S. Department of Energy, the MIT Energy Initiative, the Reed Research Fund, the Martin Family Society of Fellows for Sustainability and the ARCO Chair in Energy Studies.

Kimberly Allen | EurekAlert!
Further information:
http://www.mit.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>