Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miscanthus-based ethanol boasts bigger environmental benefits, higher profits

05.03.2015

A recent study simulated a side-by-side comparison of the yields and costs of producing ethanol using miscanthus, switchgrass, and corn stover. The fast-growing energy grass miscanthus was the clear winner. Models predict that miscanthus will have higher yield and profit, particularly when grown in poor-quality soil. It also outperformed corn stover and switchgrass in its ability to reduce greenhouse gas emissions.

"One of the reasons for interest in these second-generation cellulosic feedstocks is that if they can be grown on low-quality soil, they wouldn't compete for land with food crops, such as corn. This study shows that although miscanthus yield was slightly lower on marginal, low-quality land, a farmer would have an economic incentive to grow miscanthus on the lower quality land first rather than diverting their most productive cropland from growing corn," said University of Illinois agricultural economist Madhu Khanna who co-authored the study along with a team of economists and environmental and crop scientists from the Energy Biosciences Institute at U of I.


This image shows miscanthus and switchgrass.

Credit: University of Illinois

According to Evan DeLucia, professor in integrative biology at the University of Illinois, "There has been skepticism about whether energy crops can be grown on low-quality land. What's been lacking is a side-by-side analysis that isolates the effect of soil quality on yield. In this study, we do that. We were able to keep all of the conditions the same and only change the soil attributes," he said.

The study used real data from the University of Illinois energy farm and other locations across the country to calibrate the model so that the findings are generalizable. The model simulated yields and greenhouse gas savings under 30 years of variable weather conditions as well.

Another goal of the study was to examine the cost and greenhouse gas implications of using these sources of biomass for biofuel production. The study found that even if corn stover is harvested responsibly (removing only 30 to 50 percent depending on tillage choice) there was still a loss in soil carbon and the overall savings in greenhouse gas emissions were much smaller than those with switchgrass and miscanthus.

"It's tempting to use corn stover because it's already there--farmers who grow corn don't have to plant another crop to produce biofuel feedstock," Khanna said. "But in some cases corn stover is only about 59 percent cleaner than gasoline while miscanthus is about 140 percent cleaner. So if we want to reduce greenhouse gas emissions and lower the carbon intensity of our fuel, energy grasses such as miscanthus and switchgrass are going to result in the biggest reductions, not corn stover."

Making the choice of miscanthus-based ethanol more pleasing at the pump for consumers is another consideration. Khanna says that a price on carbon would be one way to equalize the cost of using gasoline and ethanol for consumers when filling up their tank.

"Ethanol made from miscanthus would need a much smaller carbon price to make it desirable to produce and for consumers to purchase as compared to ethanol from switchgrass and corn stover. Even though corn stover may in some cases be cheaper to produce, it is a much more expensive way to reduce greenhouse gas emissions than energy grasses," Khanna said.

###

"Cost of Abating Greenhouse Gas Emissions with Cellulosic Ethanol" was written by Puneet Dwivedi, Weiwei Wang,Tara Hudiburg, Deepak Jaiswal, William Parton, Stephen Long, Evan DeLucia, and Madhu Khanna. The article was published in Environmental Science and Technology.

This research was supported by funding from the North Central Regional Sun Grant Center at South Dakota State University through a grant provided by the U.S. Department of Energy Office of Biomass Programs and from the Energy Biosciences Institute, University of California, Berkeley.

Media Contact

Debra Levey Larson
dlarson@illinois.edu
217-244-2880

 @uignome

http://aces.illinois.edu/ 

Debra Levey Larson | EurekAlert!

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>