Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Miscanthus-based ethanol boasts bigger environmental benefits, higher profits


A recent study simulated a side-by-side comparison of the yields and costs of producing ethanol using miscanthus, switchgrass, and corn stover. The fast-growing energy grass miscanthus was the clear winner. Models predict that miscanthus will have higher yield and profit, particularly when grown in poor-quality soil. It also outperformed corn stover and switchgrass in its ability to reduce greenhouse gas emissions.

"One of the reasons for interest in these second-generation cellulosic feedstocks is that if they can be grown on low-quality soil, they wouldn't compete for land with food crops, such as corn. This study shows that although miscanthus yield was slightly lower on marginal, low-quality land, a farmer would have an economic incentive to grow miscanthus on the lower quality land first rather than diverting their most productive cropland from growing corn," said University of Illinois agricultural economist Madhu Khanna who co-authored the study along with a team of economists and environmental and crop scientists from the Energy Biosciences Institute at U of I.

This image shows miscanthus and switchgrass.

Credit: University of Illinois

According to Evan DeLucia, professor in integrative biology at the University of Illinois, "There has been skepticism about whether energy crops can be grown on low-quality land. What's been lacking is a side-by-side analysis that isolates the effect of soil quality on yield. In this study, we do that. We were able to keep all of the conditions the same and only change the soil attributes," he said.

The study used real data from the University of Illinois energy farm and other locations across the country to calibrate the model so that the findings are generalizable. The model simulated yields and greenhouse gas savings under 30 years of variable weather conditions as well.

Another goal of the study was to examine the cost and greenhouse gas implications of using these sources of biomass for biofuel production. The study found that even if corn stover is harvested responsibly (removing only 30 to 50 percent depending on tillage choice) there was still a loss in soil carbon and the overall savings in greenhouse gas emissions were much smaller than those with switchgrass and miscanthus.

"It's tempting to use corn stover because it's already there--farmers who grow corn don't have to plant another crop to produce biofuel feedstock," Khanna said. "But in some cases corn stover is only about 59 percent cleaner than gasoline while miscanthus is about 140 percent cleaner. So if we want to reduce greenhouse gas emissions and lower the carbon intensity of our fuel, energy grasses such as miscanthus and switchgrass are going to result in the biggest reductions, not corn stover."

Making the choice of miscanthus-based ethanol more pleasing at the pump for consumers is another consideration. Khanna says that a price on carbon would be one way to equalize the cost of using gasoline and ethanol for consumers when filling up their tank.

"Ethanol made from miscanthus would need a much smaller carbon price to make it desirable to produce and for consumers to purchase as compared to ethanol from switchgrass and corn stover. Even though corn stover may in some cases be cheaper to produce, it is a much more expensive way to reduce greenhouse gas emissions than energy grasses," Khanna said.


"Cost of Abating Greenhouse Gas Emissions with Cellulosic Ethanol" was written by Puneet Dwivedi, Weiwei Wang,Tara Hudiburg, Deepak Jaiswal, William Parton, Stephen Long, Evan DeLucia, and Madhu Khanna. The article was published in Environmental Science and Technology.

This research was supported by funding from the North Central Regional Sun Grant Center at South Dakota State University through a grant provided by the U.S. Department of Energy Office of Biomass Programs and from the Energy Biosciences Institute, University of California, Berkeley.

Media Contact

Debra Levey Larson


Debra Levey Larson | EurekAlert!

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>