Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The minerals on Mars influence the measuring of its temperature

15.07.2009
A team of researchers from the CSIC-INTA Astrobiology Centre in Madrid has confirmed that the type of mineralogical composition on the surface of Mars influences the measuring of its temperature.

The study is published this week in the Journal of Environmental Monitoring and will be used to interpret the data from the soil temperature sensor of NASA's Mars Science Laboratory (MSL) vehicle, whose launch is envisaged for 2011.

María Paz Martín is a researcher at the Astrobiology Centre (the CAB, a CSIC-INTA mixed organisation) and the main author of a study which has just been published by the Journal of Environmental Monitoring. "We have confirmed, by means of infrared spectroscopy tests, that the chemical-mineralogical associations on the surface of Mars influence the measuring of the temperature of the Martian soil", she explained to SINC. The infrared spectrometers register how the different mixtures of minerals reflect this type of radiation and this information is used to calculate the environmental temperature.

The work lies within the framework of a project related to the soil temperature sensor of the REMS weather station (Rover Environmental Monitoring Station). This instrument, whose design is coordinated by the CAB, forms part of the Mars Science Laboratory (MSL) vehicle and mission, which NASA intended to launch this year but has now put off until 2011.

"This research shows that, in order to carry out the thermal measurements on the surface of Mars, we must bear in mind certain specific mineralogical mixtures", Martín indicated. The results confirm that there exist significant increases and falls of up to 100% in the percentages of the reflectance values (the capacity of reflection of a surface) in mixtures such as those of basalt with hematite in comparison with those of basalt with magnetite.

To carry out the study, the scientists have selected and prepared samples of terrestrial minerals which are known to exist on Mars, such as oxides, oxi-hydroxides, sulphates, chlorides, opal and others which come from clay. These compounds were obtained from reference materials from the United States Geological Survey, as well as from different areas of the Earth similar to those of the red planet, like El Jaroso (Almería), the Tinto River (Huelva) and Atacama Desert (Chile).

The researchers pulverized the material until they achieved fewer than 45 microns, the average size of the dust of the Martian soil. They then mixed the minerals in different proportions with basalt, the most important volcanic rock on Mars, and measured how the infrared reflectance varied at the same wavelength levels as those at which the REMS temperature sensor will operate.

"The experiments confirm that any chemical-mineralogical analytical development on Mars requires the prior satisfactory quality of the methodological tests and routines on Earth", Martin stressed.

In search of signs of water and life on Mars

Jesús Martínez Frías is the co-author of the study and an astrogeologist at the CAB. "The results of this work will also have implications on the detection and exploration of the environments of Mars in which there was liquid water, as well as habitability studies and searches for life", he remarked. The infrared reflectance spectra experimentally obtained may serve as indicators to help in the task.

Martínez Frías indicated that this multidisciplinary research, in which geologists, chemists and engineers have collaborated, "opens up a new line of work which will grow with the incorporation of new minerals such as carbonates and analytical routines which bring the spectroscopic analyses closer to the most reliable Martian conditions".

This study may also be applied to the analysis of the data gathered by the instruments of other missions to Mars and other planets and to the tests in extreme environments on Earth.

References

Martín Redondo, M.P., Sebastian Martínez, E., Fernández Sampedro, M.T. Armiens, C., Gómez-Elvira, J. and Martinez-Frias, J. "FTIR reflectance of selected minerals and their mixtures: implications for the ground temperature-sensor monitoring on Mars surface environment (NASA/MSL-Rover Environmental Monitoring Station)". Journal of Environmental Monitoring 11: 1428-1432, julio de 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>