Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The minerals on Mars influence the measuring of its temperature

15.07.2009
A team of researchers from the CSIC-INTA Astrobiology Centre in Madrid has confirmed that the type of mineralogical composition on the surface of Mars influences the measuring of its temperature.

The study is published this week in the Journal of Environmental Monitoring and will be used to interpret the data from the soil temperature sensor of NASA's Mars Science Laboratory (MSL) vehicle, whose launch is envisaged for 2011.

María Paz Martín is a researcher at the Astrobiology Centre (the CAB, a CSIC-INTA mixed organisation) and the main author of a study which has just been published by the Journal of Environmental Monitoring. "We have confirmed, by means of infrared spectroscopy tests, that the chemical-mineralogical associations on the surface of Mars influence the measuring of the temperature of the Martian soil", she explained to SINC. The infrared spectrometers register how the different mixtures of minerals reflect this type of radiation and this information is used to calculate the environmental temperature.

The work lies within the framework of a project related to the soil temperature sensor of the REMS weather station (Rover Environmental Monitoring Station). This instrument, whose design is coordinated by the CAB, forms part of the Mars Science Laboratory (MSL) vehicle and mission, which NASA intended to launch this year but has now put off until 2011.

"This research shows that, in order to carry out the thermal measurements on the surface of Mars, we must bear in mind certain specific mineralogical mixtures", Martín indicated. The results confirm that there exist significant increases and falls of up to 100% in the percentages of the reflectance values (the capacity of reflection of a surface) in mixtures such as those of basalt with hematite in comparison with those of basalt with magnetite.

To carry out the study, the scientists have selected and prepared samples of terrestrial minerals which are known to exist on Mars, such as oxides, oxi-hydroxides, sulphates, chlorides, opal and others which come from clay. These compounds were obtained from reference materials from the United States Geological Survey, as well as from different areas of the Earth similar to those of the red planet, like El Jaroso (Almería), the Tinto River (Huelva) and Atacama Desert (Chile).

The researchers pulverized the material until they achieved fewer than 45 microns, the average size of the dust of the Martian soil. They then mixed the minerals in different proportions with basalt, the most important volcanic rock on Mars, and measured how the infrared reflectance varied at the same wavelength levels as those at which the REMS temperature sensor will operate.

"The experiments confirm that any chemical-mineralogical analytical development on Mars requires the prior satisfactory quality of the methodological tests and routines on Earth", Martin stressed.

In search of signs of water and life on Mars

Jesús Martínez Frías is the co-author of the study and an astrogeologist at the CAB. "The results of this work will also have implications on the detection and exploration of the environments of Mars in which there was liquid water, as well as habitability studies and searches for life", he remarked. The infrared reflectance spectra experimentally obtained may serve as indicators to help in the task.

Martínez Frías indicated that this multidisciplinary research, in which geologists, chemists and engineers have collaborated, "opens up a new line of work which will grow with the incorporation of new minerals such as carbonates and analytical routines which bring the spectroscopic analyses closer to the most reliable Martian conditions".

This study may also be applied to the analysis of the data gathered by the instruments of other missions to Mars and other planets and to the tests in extreme environments on Earth.

References

Martín Redondo, M.P., Sebastian Martínez, E., Fernández Sampedro, M.T. Armiens, C., Gómez-Elvira, J. and Martinez-Frias, J. "FTIR reflectance of selected minerals and their mixtures: implications for the ground temperature-sensor monitoring on Mars surface environment (NASA/MSL-Rover Environmental Monitoring Station)". Journal of Environmental Monitoring 11: 1428-1432, julio de 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>