Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mind uses syntax to interpret actions

05.11.2010
Most people are familiar with the concept that sentences have syntax. A verb, a subject, and an object come together in predictable patterns. But actions have syntax, too; when we watch someone else do something, we assemble their actions to mean something, according to a new study published in Psychological Science, a journal of the Association for Psychological Science.

"There are oceans and oceans of work on how we understand languages and how we interpret the things other people say," says Matthew Botvinick of Princeton University, who cowrote the paper with his colleagues Kachina Allen, Steven Ibara, Amy Seymour, and Natalia Cordova. They thought the same principle might be applied to understanding actions. For example, if you see someone buy a ticket, give it to the attendant, and ride on the carousel, you understand that exchanging money for a piece of paper gave him the right to get on the round thing and go around in circles.

Botvinick and his colleagues focused on action sequences that followed two contrasting kinds of syntax—a linear syntax, in which action A (buying a ticket) leads to action B (giving the ticket to the attendant), which leads to outcome C (riding the carousel), and another syntax in which actions A and B both independently lead to outcome C. They were testing whether the difference in structure affected the way that people read about the actions.

The experiments were based on studies suggesting that people read a sentence faster if it comes after a sentence with the same grammatical form. But in this case, the scientists varied relationships between actions rather than the order of parts of speech. In one experiment, volunteers read sentences that described three actions. They took one of two forms: either one action leads to the next action, which leads to the outcome, such as "John purchased a carousel ticket, gave it to the attendant, and went for a ride," or sentences like "John sliced up some tomatoes, rinsed off some lettuce, and tossed together a salad"—in which both of the first two actions lead to the result, without the second depending on the first.

Indeed, people were able to read a sentence more quickly if it followed a set of actions arranged the same way than if it followed a sentence of the other type. This indicates that readers' minds had some kind of abstract representation of the ways goals and actions relate, says Botvinick. "It's the underlying knowledge structure that kind of glues actions together. Otherwise, you could watch somebody do something and say it's just a random sequence of actions."

In the carousel example, a Martian might not understand why John exchanges paper for another piece of paper, why he gives the paper to the other man, why he goes around and around in circles, and what relationship there is between these actions. As humans, we've worked all of those things out, and Botvinick thinks he's a step closer to understanding the process.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Abstract Structural Representations of Goal-Directed Behavior" and access to other Psychological Science research findings, please contact Keri Chiodo at 202-293-9300 or kchiodo@psychologicalscience.org.

Keri Chiodo | EurekAlert!
Further information:
http://www.psychologicalscience.org

Further reports about: Psychological Science Syntax linear syntax

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>