Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From mild-mannered to killer plague

30.08.2011
Study explains plague's rapid evolution and sheds light on fighting deadly diseases

In the evolutionary blink of an eye, a bacterium that causes mild stomach irritation evolved into a deadly assassin responsible for the most devastating pandemics in human history. How did the mild-mannered Yersinia pseudotuberculosis become Yersinia pestis, more commonly known as the Plague?

Now, scientists from Northwestern University Feinberg School of Medicine, with the use of new DNA sequencing techniques, offer long sought after evidence of how these two pathogens with virtually identical genetic matter could produce two such vastly different diseases. The Feinberg School team used the new DNA sequencing techniques to identify an unexpected source for these differences, which may help explain the Plague's rapid evolution.

The findings, to be published Aug. 29 in the journal Proceedings of the National Academy of Sciences, offer a glimpse into how the new technology might aid in the development of therapeutics to fight deadly diseases, including the Plague.

"Most people think of the Plague as a historic disease, but it's still a public health issue today, both in the human population and in animals," said Wyndham Lathem, lead author of the study and assistant professor of microbiology-immunology at Northwestern's Feinberg School. "It's extremely dangerous and highly virulent. Without treatment, it can take as little as three to five days from infection to death."

Globally, the World Health Organization reports 1,000 to 3,000 cases of Plague every year, and Y. pestis exists on every continent except Antarctica. The United States Department of Homeland Security classifies Y. pestis as a Category A biological agent, a group that also includes anthrax, smallpox and Ebola.

The Plague's ancestor, Y. pseudotuberculosis, still exists and infects humans, but it causes a mild gastrointestinal disease and most people don't show symptoms.

Lathem and colleagues have discovered the differences in disease severity between these two subspecies may have arisen from changes in small, non-coding RNAs (sRNAs), complex molecules involved in controlling many cellular processes.

The Northwestern team is the first to show that sRNAs in Yersinia affect virulence, a finding that suggests the evolution of pathogens may also occur at the level of changes in RNA and in the way protein-coding genes are regulated.

Lathem used advanced DNA sequencing technology — called high-throughput sequencing — to identify the complete set of sRNAs produced by Y. pseudotuberculosis. The technology enabled his team to study the diseases for the first time at a deeper genetic level.

"This technique enables us to really pick apart how pathogens evolve and how different species of bacteria are able to cause different types of disease," Lathem said. "It goes beyond looking at what proteins are produced by the bacteria. It's an additional layer of evolutionary analysis."

This detective work is important because if researchers can identify unique characteristics among deadly species such as Y. pestis, they may be able to generate new therapeutics or adapt current ones.

Unlike traditional "messenger" RNA, which is copied from DNA to create proteins and is well understood by scientists, these non-coding sRNA molecules are never translated into proteins. Hundreds of noncoding RNA molecules exist inside bacterial cells, but, until recently, scientists had not determined the function of many.

"Once we identified the complete set of sRNAs for Y. pseudotuberculosis, further analysis unlocked a number of surprising discoveries about their function," Lathem said.

Among these surprising discoveries, Lathem's team identified 150 sRNAs, a majority of which are specific to the Yersinia species, and six sRNAs unique to Y. pseudotuberculosis. Those six sRNAs are missing in Y. pestis, likely lost during its rapid evolution (somewhere between 1,500 and 20,000 years ago), and thereby potentially responsible for the Plague's virulence. Lathem's team developed this explanation because they could specify exactly which genes the sRNAs control.

First author Jovanka Koo, a postdoctoral fellow in Lathem's lab at Feinberg, noted, "An important lesson is that small changes can have big effects on sRNA functions. They can affect when an RNA is expressed or produced, the way that RNA folds, and the ability of that RNA to affect the regulated protein coding RNA." Over time, those small changes can become the difference between mild and deadly diseases.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: DNA DNA sequencing RNA RNA molecule bacterial cell cellular process deadly disease plague

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>