Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From mild-mannered to killer plague

30.08.2011
Study explains plague's rapid evolution and sheds light on fighting deadly diseases

In the evolutionary blink of an eye, a bacterium that causes mild stomach irritation evolved into a deadly assassin responsible for the most devastating pandemics in human history. How did the mild-mannered Yersinia pseudotuberculosis become Yersinia pestis, more commonly known as the Plague?

Now, scientists from Northwestern University Feinberg School of Medicine, with the use of new DNA sequencing techniques, offer long sought after evidence of how these two pathogens with virtually identical genetic matter could produce two such vastly different diseases. The Feinberg School team used the new DNA sequencing techniques to identify an unexpected source for these differences, which may help explain the Plague's rapid evolution.

The findings, to be published Aug. 29 in the journal Proceedings of the National Academy of Sciences, offer a glimpse into how the new technology might aid in the development of therapeutics to fight deadly diseases, including the Plague.

"Most people think of the Plague as a historic disease, but it's still a public health issue today, both in the human population and in animals," said Wyndham Lathem, lead author of the study and assistant professor of microbiology-immunology at Northwestern's Feinberg School. "It's extremely dangerous and highly virulent. Without treatment, it can take as little as three to five days from infection to death."

Globally, the World Health Organization reports 1,000 to 3,000 cases of Plague every year, and Y. pestis exists on every continent except Antarctica. The United States Department of Homeland Security classifies Y. pestis as a Category A biological agent, a group that also includes anthrax, smallpox and Ebola.

The Plague's ancestor, Y. pseudotuberculosis, still exists and infects humans, but it causes a mild gastrointestinal disease and most people don't show symptoms.

Lathem and colleagues have discovered the differences in disease severity between these two subspecies may have arisen from changes in small, non-coding RNAs (sRNAs), complex molecules involved in controlling many cellular processes.

The Northwestern team is the first to show that sRNAs in Yersinia affect virulence, a finding that suggests the evolution of pathogens may also occur at the level of changes in RNA and in the way protein-coding genes are regulated.

Lathem used advanced DNA sequencing technology — called high-throughput sequencing — to identify the complete set of sRNAs produced by Y. pseudotuberculosis. The technology enabled his team to study the diseases for the first time at a deeper genetic level.

"This technique enables us to really pick apart how pathogens evolve and how different species of bacteria are able to cause different types of disease," Lathem said. "It goes beyond looking at what proteins are produced by the bacteria. It's an additional layer of evolutionary analysis."

This detective work is important because if researchers can identify unique characteristics among deadly species such as Y. pestis, they may be able to generate new therapeutics or adapt current ones.

Unlike traditional "messenger" RNA, which is copied from DNA to create proteins and is well understood by scientists, these non-coding sRNA molecules are never translated into proteins. Hundreds of noncoding RNA molecules exist inside bacterial cells, but, until recently, scientists had not determined the function of many.

"Once we identified the complete set of sRNAs for Y. pseudotuberculosis, further analysis unlocked a number of surprising discoveries about their function," Lathem said.

Among these surprising discoveries, Lathem's team identified 150 sRNAs, a majority of which are specific to the Yersinia species, and six sRNAs unique to Y. pseudotuberculosis. Those six sRNAs are missing in Y. pestis, likely lost during its rapid evolution (somewhere between 1,500 and 20,000 years ago), and thereby potentially responsible for the Plague's virulence. Lathem's team developed this explanation because they could specify exactly which genes the sRNAs control.

First author Jovanka Koo, a postdoctoral fellow in Lathem's lab at Feinberg, noted, "An important lesson is that small changes can have big effects on sRNA functions. They can affect when an RNA is expressed or produced, the way that RNA folds, and the ability of that RNA to affect the regulated protein coding RNA." Over time, those small changes can become the difference between mild and deadly diseases.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: DNA DNA sequencing RNA RNA molecule bacterial cell cellular process deadly disease plague

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>