Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From mild-mannered to killer plague

30.08.2011
Study explains plague's rapid evolution and sheds light on fighting deadly diseases

In the evolutionary blink of an eye, a bacterium that causes mild stomach irritation evolved into a deadly assassin responsible for the most devastating pandemics in human history. How did the mild-mannered Yersinia pseudotuberculosis become Yersinia pestis, more commonly known as the Plague?

Now, scientists from Northwestern University Feinberg School of Medicine, with the use of new DNA sequencing techniques, offer long sought after evidence of how these two pathogens with virtually identical genetic matter could produce two such vastly different diseases. The Feinberg School team used the new DNA sequencing techniques to identify an unexpected source for these differences, which may help explain the Plague's rapid evolution.

The findings, to be published Aug. 29 in the journal Proceedings of the National Academy of Sciences, offer a glimpse into how the new technology might aid in the development of therapeutics to fight deadly diseases, including the Plague.

"Most people think of the Plague as a historic disease, but it's still a public health issue today, both in the human population and in animals," said Wyndham Lathem, lead author of the study and assistant professor of microbiology-immunology at Northwestern's Feinberg School. "It's extremely dangerous and highly virulent. Without treatment, it can take as little as three to five days from infection to death."

Globally, the World Health Organization reports 1,000 to 3,000 cases of Plague every year, and Y. pestis exists on every continent except Antarctica. The United States Department of Homeland Security classifies Y. pestis as a Category A biological agent, a group that also includes anthrax, smallpox and Ebola.

The Plague's ancestor, Y. pseudotuberculosis, still exists and infects humans, but it causes a mild gastrointestinal disease and most people don't show symptoms.

Lathem and colleagues have discovered the differences in disease severity between these two subspecies may have arisen from changes in small, non-coding RNAs (sRNAs), complex molecules involved in controlling many cellular processes.

The Northwestern team is the first to show that sRNAs in Yersinia affect virulence, a finding that suggests the evolution of pathogens may also occur at the level of changes in RNA and in the way protein-coding genes are regulated.

Lathem used advanced DNA sequencing technology — called high-throughput sequencing — to identify the complete set of sRNAs produced by Y. pseudotuberculosis. The technology enabled his team to study the diseases for the first time at a deeper genetic level.

"This technique enables us to really pick apart how pathogens evolve and how different species of bacteria are able to cause different types of disease," Lathem said. "It goes beyond looking at what proteins are produced by the bacteria. It's an additional layer of evolutionary analysis."

This detective work is important because if researchers can identify unique characteristics among deadly species such as Y. pestis, they may be able to generate new therapeutics or adapt current ones.

Unlike traditional "messenger" RNA, which is copied from DNA to create proteins and is well understood by scientists, these non-coding sRNA molecules are never translated into proteins. Hundreds of noncoding RNA molecules exist inside bacterial cells, but, until recently, scientists had not determined the function of many.

"Once we identified the complete set of sRNAs for Y. pseudotuberculosis, further analysis unlocked a number of surprising discoveries about their function," Lathem said.

Among these surprising discoveries, Lathem's team identified 150 sRNAs, a majority of which are specific to the Yersinia species, and six sRNAs unique to Y. pseudotuberculosis. Those six sRNAs are missing in Y. pestis, likely lost during its rapid evolution (somewhere between 1,500 and 20,000 years ago), and thereby potentially responsible for the Plague's virulence. Lathem's team developed this explanation because they could specify exactly which genes the sRNAs control.

First author Jovanka Koo, a postdoctoral fellow in Lathem's lab at Feinberg, noted, "An important lesson is that small changes can have big effects on sRNA functions. They can affect when an RNA is expressed or produced, the way that RNA folds, and the ability of that RNA to affect the regulated protein coding RNA." Over time, those small changes can become the difference between mild and deadly diseases.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: DNA DNA sequencing RNA RNA molecule bacterial cell cellular process deadly disease plague

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>