Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Migratory Birds Help Spread Plant Species: UConn Study

17.06.2014

This time of year, many in the country are watching warily as pollen floats far and wide on the wind, enabling plants to reproduce but also causing sneezes and watery eyes.

But a new study out of the University of Connecticut demonstrates for the first time how some plants travel not just across the backyard, but as far as from Northern to Southern hemispheres on the wings of migratory birds.


Each year, 500,000 American golden plovers fly between Arctic North America and South America. These birds may carry hundreds of thousands of microscopic plant parts, called diaspores, in their feathers. (Photo by Jean-François Lamarre)

The findings, published in the online journal PeerJ, offer critical insight into the ecology and evolution of plants that are represented across both continents of the Americas.

Led by Lily Lewis, a Ph.D. student in the Department of Ecology and Evolutionary Biology, the study found 23 regenerative plant diaspores – plant seeds or spores – trapped in the feathers of migratory birds leaving the Arctic harbor for South America.

... more about:
»Biology »Birds »Plant »breast »seeds »tropics

“Scientists have always assumed that birds might be responsible for dispersing the seeds,” says Emily Behling ’15 (CLAS), a UConn undergraduate who contributed to the study. “But this bugged Lily. She wanted to know what was really going on.”

Although wind is the primary means for long-distance dispersal of diaspores around the world, it is an unlikely candidate for explaining distribution between the hemispheres. Yet previous evidence of birds dispersing plant seeds or spores across the tropics had been only circumstantial.

The researchers studied American golden plovers, semipalmated sandpipers, and red phalaropes – all birds that breed in coastal tundra. Many of the plant parts found in their feathers belonged to mosses, which are especially hardy plants and often need only one dispersal event to establish in a new place, says Lewis.

The behavior of these migrant birds in their northern breeding grounds likely promotes their inadvertent acquisition of diaspores, according to the study. Shallow nests are constructed by scraping depressions into the ground with breast, feet, and beaks, and are commonly lined with plant materials.

The timing of molt and migratory behavior also increases the likelihood of attached diaspores being dispersed across the birds’ migratory range.

The post-migratory molt and terrestrial destinations of American golden plovers and semipalmated sandpipers are compatible with the requirements for dispersal across the equator. The majority of migratory shorebirds with non-breeding grounds in the Southern Hemisphere provide similar opportunities for diaspore dispersal, with the molt typically occurring on the southern non-breeding grounds.

Funding for the research came from University of Connecticut Katie Bu Memorial Fund, a Switzer Environmental Fellowship awarded to Lewis, and the National Science Foundation.

This summer, Behling will present the study findings at the national Evolution 2014 conference in North Carolina.

Behling also plans to continue the research by examining the DNA of the plant particles found in the feathers to learn more about the plants that are being dispersed by the migratory birds.

Colin Poitras | Eurek Alert!
Further information:
http://today.uconn.edu/blog/2014/06/migratory-birds-help-spread-plant-species-uconn-study/

Further reports about: Biology Birds Plant breast seeds tropics

More articles from Studies and Analyses:

nachricht New study: How stable is the West Antarctic Ice Sheet?
09.02.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Online shopping might not be as green as we thought
08.02.2016 | University of Delaware

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>