Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Migratory Birds Help Spread Plant Species: UConn Study

17.06.2014

This time of year, many in the country are watching warily as pollen floats far and wide on the wind, enabling plants to reproduce but also causing sneezes and watery eyes.

But a new study out of the University of Connecticut demonstrates for the first time how some plants travel not just across the backyard, but as far as from Northern to Southern hemispheres on the wings of migratory birds.


Each year, 500,000 American golden plovers fly between Arctic North America and South America. These birds may carry hundreds of thousands of microscopic plant parts, called diaspores, in their feathers. (Photo by Jean-François Lamarre)

The findings, published in the online journal PeerJ, offer critical insight into the ecology and evolution of plants that are represented across both continents of the Americas.

Led by Lily Lewis, a Ph.D. student in the Department of Ecology and Evolutionary Biology, the study found 23 regenerative plant diaspores – plant seeds or spores – trapped in the feathers of migratory birds leaving the Arctic harbor for South America.

... more about:
»Biology »Birds »Plant »breast »seeds »tropics

“Scientists have always assumed that birds might be responsible for dispersing the seeds,” says Emily Behling ’15 (CLAS), a UConn undergraduate who contributed to the study. “But this bugged Lily. She wanted to know what was really going on.”

Although wind is the primary means for long-distance dispersal of diaspores around the world, it is an unlikely candidate for explaining distribution between the hemispheres. Yet previous evidence of birds dispersing plant seeds or spores across the tropics had been only circumstantial.

The researchers studied American golden plovers, semipalmated sandpipers, and red phalaropes – all birds that breed in coastal tundra. Many of the plant parts found in their feathers belonged to mosses, which are especially hardy plants and often need only one dispersal event to establish in a new place, says Lewis.

The behavior of these migrant birds in their northern breeding grounds likely promotes their inadvertent acquisition of diaspores, according to the study. Shallow nests are constructed by scraping depressions into the ground with breast, feet, and beaks, and are commonly lined with plant materials.

The timing of molt and migratory behavior also increases the likelihood of attached diaspores being dispersed across the birds’ migratory range.

The post-migratory molt and terrestrial destinations of American golden plovers and semipalmated sandpipers are compatible with the requirements for dispersal across the equator. The majority of migratory shorebirds with non-breeding grounds in the Southern Hemisphere provide similar opportunities for diaspore dispersal, with the molt typically occurring on the southern non-breeding grounds.

Funding for the research came from University of Connecticut Katie Bu Memorial Fund, a Switzer Environmental Fellowship awarded to Lewis, and the National Science Foundation.

This summer, Behling will present the study findings at the national Evolution 2014 conference in North Carolina.

Behling also plans to continue the research by examining the DNA of the plant particles found in the feathers to learn more about the plants that are being dispersed by the migratory birds.

Colin Poitras | Eurek Alert!
Further information:
http://today.uconn.edu/blog/2014/06/migratory-birds-help-spread-plant-species-uconn-study/

Further reports about: Biology Birds Plant breast seeds tropics

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>