Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbubble-delivered combination therapy eradicates prostate cancer in vivo

11.05.2011
Researchers prevent tumor growth in prostate-cancer-prone transgenic mice by combining an anti-cancer drug with viral gene therapy delivered by ultrasound-targeted microbubble technology

Cancer researchers are a step closer to finding a cure for advanced prostate cancer after effectively combining an anti-cancer drug with a viral gene therapy in vivo using novel ultrasound-targeted microbubble-destruction (UTMD) technology.

The research was conducted by scientists at Virginia Commonwealth University Massey Cancer Center, VCU Institute of Molecular Medicine and School of Medicine, in collaboration with colleagues from Washington University School of Medicine and Sanford-Burnham Medical Research Institute.

In their study, published in the journal Proceedings of the National Academy of Sciences, prostate cancer growth in mice with functioning immune systems was inhibited by sensitizing the cancer cells with the drug Sabutoclax (BI-97C1) and using UTMD technology to deliver a viral gene therapy that expresses the gene mda-7/IL-24. This powerful new approach to treating prostate cancer builds upon prior studies by principle investigator Paul B. Fisher, M.Ph., Ph.D., Thelma Newmeyer Corman Endowed Chair at VCU Massey, professor and chair of the Department of Human and Molecular Genetics in the VCU School of Medicine and director of the VCU Institute of Molecular Medicine.

Sabutoclax works by inhibiting the protein Mcl-1, which is known to promote cell survival by preventing a form of cell suicide known as apoptosis. Fisher's laboratory studies previously showed that the gene mda-7/IL-24 increases apoptosis in tumor cells, prevents tumor growth and blood vessel formation, synergizes with other cancer treatments and also regulates cellular immune responses while having no ill effects on normal, healthy cells. By showing the combined effectiveness of these agents, the researchers have discovered a novel treatment approach for prostate cancer.

"Successful execution of viral gene therapy is typically limited by the body's natural defenses, such as trapping the virus in the liver and attacking the virus with its natural immune system response," says Fisher. "This study not only identifies a potential new therapy for prostate cancer, it also provides a new way of using therapeutic viruses that could transform the way we deliver viral gene therapy."

UTMD uses microscopic, gas-filled bubbles that provide great contrast against soft tissue when viewed using ultrasound equipment. The microbubbles can also be paired with complexes made to bind to specific areas of the body, allowing them to be targeted. In this study, a weakened adenovirus (a virus that is typically associated with respiratory infections) engineered to deliver the tumor-suppressing gene mda-7/IL-24 was joined to the microbubbles and delivered through the blood stream directly into the prostate. UTMD's ability to systematically target a disease site could revolutionize gene therapy.

"Although our studies focused on prostate cancer, in principle, they could be applied to many other cancers," says Fisher. "Additionally, ultrasound-targeted microbubble destruction could deliver directly to cancers other viruses, therapeutic genes not contained in a virus and potentially other therapeutic proteins."

UTMD technology is currently utilized in Phase III clinical trials to treat heart disease. Because the technology is already being applied in the clinic, the researchers plan to partner with clinicians to develop a Phase I clinical trial to evaluate the safety of viral gene therapy using UTMD in patients with prostate cancer.

Fisher collaborated on this study with Xiang-Yang Wang, Ph.D., Paul Dent, Ph.D., Steven Grant, M.D., and Devanand Sarkar, M.B.B.S., Ph.D., from VCU Massey Cancer Center; Rupesh Dash, Ph.D., Belal Azab, Ph.D. student, Bridget A Quinn, M.D., Ph.D. student, Xuening Shen, M.D., Swadesh K. Das, Ph.D., and Mohamed Rahmani, Ph.D., from Virginia Commonwealth University; Igor Dmitriev, Ph.D., and David T. Curiel, M.D., Ph.D., from Washington University School of Medicine; and Jun Wei, Ph.D., Michael Hedvat, Ph.D., Bainan Wu, Ph.D., John L. Stebbins, Ph.D., Maurizio Pellecchia, Ph.D., and John C. Reed, M.D., Ph.D., from Sanford-Burnham Medical Research Institute.

Funding for this study was provided in part by grants from the National Institutes of Health (R01 CA097318, R01 CA127641, P01 CA104177, R01 CA149668) and National Foundation for Cancer Research.

News directors: Broadcast access to VCU Massey Cancer Center experts is available through VideoLink ReadyCam. ReadyCam transmits video and audio via fiber optics through a system that is routed to your newsroom. To schedule a live or taped interview, contact John Wallace, (804) 628-1550.

About VCU Massey Cancer Center

VCU Massey Cancer Center is one of only 66 National Cancer Institute-designated institutions in the country that leads and shapes America's cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and clinical trials, and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It has one of the largest offerings of clinical trials in Virginia and serves patients in Richmond and in four satellite locations. Its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and ultimately to cure cancer. Visit Massey online at www.massey.vcu.edu or call 877-4-MASSEY for more information. About VCU and the VCU Medical Center Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see www.vcu.edu.

John Wallace | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>