Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microbubble-delivered combination therapy eradicates prostate cancer in vivo

Researchers prevent tumor growth in prostate-cancer-prone transgenic mice by combining an anti-cancer drug with viral gene therapy delivered by ultrasound-targeted microbubble technology

Cancer researchers are a step closer to finding a cure for advanced prostate cancer after effectively combining an anti-cancer drug with a viral gene therapy in vivo using novel ultrasound-targeted microbubble-destruction (UTMD) technology.

The research was conducted by scientists at Virginia Commonwealth University Massey Cancer Center, VCU Institute of Molecular Medicine and School of Medicine, in collaboration with colleagues from Washington University School of Medicine and Sanford-Burnham Medical Research Institute.

In their study, published in the journal Proceedings of the National Academy of Sciences, prostate cancer growth in mice with functioning immune systems was inhibited by sensitizing the cancer cells with the drug Sabutoclax (BI-97C1) and using UTMD technology to deliver a viral gene therapy that expresses the gene mda-7/IL-24. This powerful new approach to treating prostate cancer builds upon prior studies by principle investigator Paul B. Fisher, M.Ph., Ph.D., Thelma Newmeyer Corman Endowed Chair at VCU Massey, professor and chair of the Department of Human and Molecular Genetics in the VCU School of Medicine and director of the VCU Institute of Molecular Medicine.

Sabutoclax works by inhibiting the protein Mcl-1, which is known to promote cell survival by preventing a form of cell suicide known as apoptosis. Fisher's laboratory studies previously showed that the gene mda-7/IL-24 increases apoptosis in tumor cells, prevents tumor growth and blood vessel formation, synergizes with other cancer treatments and also regulates cellular immune responses while having no ill effects on normal, healthy cells. By showing the combined effectiveness of these agents, the researchers have discovered a novel treatment approach for prostate cancer.

"Successful execution of viral gene therapy is typically limited by the body's natural defenses, such as trapping the virus in the liver and attacking the virus with its natural immune system response," says Fisher. "This study not only identifies a potential new therapy for prostate cancer, it also provides a new way of using therapeutic viruses that could transform the way we deliver viral gene therapy."

UTMD uses microscopic, gas-filled bubbles that provide great contrast against soft tissue when viewed using ultrasound equipment. The microbubbles can also be paired with complexes made to bind to specific areas of the body, allowing them to be targeted. In this study, a weakened adenovirus (a virus that is typically associated with respiratory infections) engineered to deliver the tumor-suppressing gene mda-7/IL-24 was joined to the microbubbles and delivered through the blood stream directly into the prostate. UTMD's ability to systematically target a disease site could revolutionize gene therapy.

"Although our studies focused on prostate cancer, in principle, they could be applied to many other cancers," says Fisher. "Additionally, ultrasound-targeted microbubble destruction could deliver directly to cancers other viruses, therapeutic genes not contained in a virus and potentially other therapeutic proteins."

UTMD technology is currently utilized in Phase III clinical trials to treat heart disease. Because the technology is already being applied in the clinic, the researchers plan to partner with clinicians to develop a Phase I clinical trial to evaluate the safety of viral gene therapy using UTMD in patients with prostate cancer.

Fisher collaborated on this study with Xiang-Yang Wang, Ph.D., Paul Dent, Ph.D., Steven Grant, M.D., and Devanand Sarkar, M.B.B.S., Ph.D., from VCU Massey Cancer Center; Rupesh Dash, Ph.D., Belal Azab, Ph.D. student, Bridget A Quinn, M.D., Ph.D. student, Xuening Shen, M.D., Swadesh K. Das, Ph.D., and Mohamed Rahmani, Ph.D., from Virginia Commonwealth University; Igor Dmitriev, Ph.D., and David T. Curiel, M.D., Ph.D., from Washington University School of Medicine; and Jun Wei, Ph.D., Michael Hedvat, Ph.D., Bainan Wu, Ph.D., John L. Stebbins, Ph.D., Maurizio Pellecchia, Ph.D., and John C. Reed, M.D., Ph.D., from Sanford-Burnham Medical Research Institute.

Funding for this study was provided in part by grants from the National Institutes of Health (R01 CA097318, R01 CA127641, P01 CA104177, R01 CA149668) and National Foundation for Cancer Research.

News directors: Broadcast access to VCU Massey Cancer Center experts is available through VideoLink ReadyCam. ReadyCam transmits video and audio via fiber optics through a system that is routed to your newsroom. To schedule a live or taped interview, contact John Wallace, (804) 628-1550.

About VCU Massey Cancer Center

VCU Massey Cancer Center is one of only 66 National Cancer Institute-designated institutions in the country that leads and shapes America's cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and clinical trials, and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It has one of the largest offerings of clinical trials in Virginia and serves patients in Richmond and in four satellite locations. Its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and ultimately to cure cancer. Visit Massey online at or call 877-4-MASSEY for more information. About VCU and the VCU Medical Center Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see

John Wallace | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>