Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice in “Big Brother” Setup Develop Social Structures

19.06.2013
How does a social animal – mouse or human – gain dominance over his or her fellow creatures? A unique experiment conducted by Dr. Tali Kimchi and her team in the Weizmann Institute’s Department of Neurobiology provides some unusual insight into the social behavior that enables a social hierarchy, complete with a head honcho, to form.

Dr. Kimchi and her research team, Aharon Weissbrod, Genady Wasserman, and Alex Shapiro, together with Dr. Ofer Feinerman of the Department of Physics of Complex Systems, developed a system that enabled them to observe a large group of animals living together in semi-natural conditions. This setup was a sort of mouse version of the television show Big Brother.

Different strains of mice were placed in the “house” – a four-meter-square pen – and allowed to go about their lives with no intervention from the human team.

To automatically track the mice day and night, each mouse was implanted with an ID chip similar to those used in pet cats and dogs, and video cameras were placed strategically around the area, with infrared lighting that enabled nighttime filming. With the combined chip reporting and continuous video footage, the system could automatically keep tabs on each individual mouse, knowing its precise location down to the half centimeter, in measurements that were recorded 30 times a second for days – and sometimes even months – on end.

Because the information they obtained was so precise, the team was able to identify dozens of individual behaviors – eating, drinking, running, sleeping, hiding, etc. – as well as social behaviors – seeking out specific companions for activities or rest, avoiding certain individuals, attacking others, and more. The researchers found that it was possible to isolate and identify typical behaviors of individuals, pairs, and groups. In fact, just by sorting out behavioral patterns, the automated system was able to differentiate between the various genetic strains of the mice in the mixed groups, as well as predict mating, with over 90% accuracy. These close observations revealed, among other social features, how one of the individuals became “king” of the group, attaining dominance over the others, both male and female.

In further experiments, the “house” inhabitants comprised one of two strains of mice, the first more “social” and the second “autistic” (exhibiting little social engagement and rigid behavior patterns). The system automatically identified the “autistic” mice by identifying their patterns of movement and public behavior.

In a paper that appeared this week in Nature Communications, Dr. Kimchi and her team describe the emergence of the dominant leader and the development of a class system in a group of normal mice – just within a 24-hour period. Surprisingly, when they conducted a similar experiment with the autistic-like mice, either no leader emerged or, if one did, he was quickly overthrown.

The precise, automatic, semi-natural system the scientists have developed is enabling a deep, systematic study of the mechanisms for regulating social behavior in animal models; it may be especially useful for providing insight into the societal aspects of such disorders as schizophrenia and autism.

Dr. Ofer Feinerman’s research is supported by the Clore Foundation. Dr. Feinerman is the incumbent of the Shlomo and Michla Tomarin Career Development Chair.

Dr. Tali Kimchi’s research is supported by the Nella and Leon Benoziyo Center for Neurological Diseases; the Joan and Jonathan Birnbach Family Laboratory Fund; the Abisch Frenkel Foundation for the Promotion of Life Sciences; the Peter and Patricia Gruber Awards; Mike and Valeria Rosenbloom through the Mike Rosenbloom Foundation; the Harris Foundation for Brain Research; and the estate of Fannie Sherr. Dr. Kimchi is the incumbent of the Jenna and Julia Birnbach Family Career Development Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise
Further information:
http://www.acwis.org

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>