Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane Leaks Can Make Fracking Gas ‘Dirtier’ than Coal Or Oil

13.04.2011
Extracting natural gas from the Marcellus Shale could do more to aggravate global warming than mining coal, according to a Cornell study published in the May issue of the peer-reviewed journal Climatic Change Letters.

While natural gas has been touted as a clean-burning fuel that produces less carbon dioxide than coal, ecologist Robert Howarth warns that we should be more concerned about methane leaking into the atmosphere during hydraulic fracturing.

Natural gas is mostly methane, which is a much more potent greenhouse gas, especially in the short term, with 105 times more warming impact, pound for pound, than carbon dioxide, Howarth said, adding that even small leaks make a big difference. He estimated that as much as 8 percent of the methane in shale gas leaks into the air during the lifetime of a hydraulic shale gas well – up to twice what escapes from conventional gas production.

“The take-home message of our study is that if you do an integration of 20 years following the development of the gas, shale gas is worse than conventional gas and is, in fact, worse than coal and worse than oil,” Howarth said. “We are not advocating for more coal or oil, but rather to move to a truly green, renewable future as quickly as possible. We need to look at the true environmental consequences of shale gas.”

Howarth, a professor of ecology and environmental biology, Tony Ingraffea, professor of engineering, and Renee Santoro, a research technician in ecology and evolutionary biology, analyzed data from published sources, industry reports and even PowerPoint presentations from the Environmental Protection Agency.

They compared estimated emissions for shale gas, conventional gas, coal (surface-mined and deep-mined) and diesel oil, taking into account direct emissions of CO2 during combustion, indirect emissions of CO2 necessary to develop and use the energy source and methane emissions, which were converted to equivalent value of CO2 for global warming potential.

The study is the first peer-reviewed paper on methane emissions from shale gas, and one of the few exploring the greenhouse gas footprints of conventional gas drilling. Most studies have used EPA emission estimates from 1996, which were updated in November 2010 when it was determined that greenhouse gas emissions of various fuels are higher than previously believed.

“We are highlighting unconventional gas because it is a contemporary problem for us in upstate New York, and because there is a big difference between developing gas from an unconventional well and a conventional well, for the mere reason that unconventional wells are bigger,” Ingraffea said.

He noted that the hydraulic fracturing process lends itself to more leakage because it takes more time to drill the well, requires more venting and produces more flowback waste, he said.

“We do not intend for you to accept what we’ve reported on today as the definitive scientific study in regards to this question. It’s clearly not,” he added. “What we’re hoping to do with this study is to stimulate the science that should have been done before. In my opinion, corporate business plans superseded national energy strategy.”

Joe Schwartz | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>