Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane Leaks Can Make Fracking Gas ‘Dirtier’ than Coal Or Oil

13.04.2011
Extracting natural gas from the Marcellus Shale could do more to aggravate global warming than mining coal, according to a Cornell study published in the May issue of the peer-reviewed journal Climatic Change Letters.

While natural gas has been touted as a clean-burning fuel that produces less carbon dioxide than coal, ecologist Robert Howarth warns that we should be more concerned about methane leaking into the atmosphere during hydraulic fracturing.

Natural gas is mostly methane, which is a much more potent greenhouse gas, especially in the short term, with 105 times more warming impact, pound for pound, than carbon dioxide, Howarth said, adding that even small leaks make a big difference. He estimated that as much as 8 percent of the methane in shale gas leaks into the air during the lifetime of a hydraulic shale gas well – up to twice what escapes from conventional gas production.

“The take-home message of our study is that if you do an integration of 20 years following the development of the gas, shale gas is worse than conventional gas and is, in fact, worse than coal and worse than oil,” Howarth said. “We are not advocating for more coal or oil, but rather to move to a truly green, renewable future as quickly as possible. We need to look at the true environmental consequences of shale gas.”

Howarth, a professor of ecology and environmental biology, Tony Ingraffea, professor of engineering, and Renee Santoro, a research technician in ecology and evolutionary biology, analyzed data from published sources, industry reports and even PowerPoint presentations from the Environmental Protection Agency.

They compared estimated emissions for shale gas, conventional gas, coal (surface-mined and deep-mined) and diesel oil, taking into account direct emissions of CO2 during combustion, indirect emissions of CO2 necessary to develop and use the energy source and methane emissions, which were converted to equivalent value of CO2 for global warming potential.

The study is the first peer-reviewed paper on methane emissions from shale gas, and one of the few exploring the greenhouse gas footprints of conventional gas drilling. Most studies have used EPA emission estimates from 1996, which were updated in November 2010 when it was determined that greenhouse gas emissions of various fuels are higher than previously believed.

“We are highlighting unconventional gas because it is a contemporary problem for us in upstate New York, and because there is a big difference between developing gas from an unconventional well and a conventional well, for the mere reason that unconventional wells are bigger,” Ingraffea said.

He noted that the hydraulic fracturing process lends itself to more leakage because it takes more time to drill the well, requires more venting and produces more flowback waste, he said.

“We do not intend for you to accept what we’ve reported on today as the definitive scientific study in regards to this question. It’s clearly not,” he added. “What we’re hoping to do with this study is to stimulate the science that should have been done before. In my opinion, corporate business plans superseded national energy strategy.”

Joe Schwartz | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>