Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metabolism in the brain fluctuates with circadian rhythm

29.08.2012
The rhythm of life is driven by the cycles of day and night, and most organisms carry in their cells a common, (roughly) 24-hour beat.

In animals, this rhythm emerges from a tiny brain structure called the suprachiasmatic nucleus (SCN) in the hypothalamus. Take it out of the brain and keep it alive in a lab dish and this “brain clock” will keep on ticking, ramping up or gearing down production of certain proteins at specific times of the day, day after day.

A new study reveals that the brain clock itself is driven, in part, by metabolism, the production and flow of chemical energy in cells. The researchers focused primarily on a phenomenon known as “redox” in tissues of the SCN from the brains of rats and mice.

Redox represents the energy changes of cellular metabolism (usually through the transfer of electrons). When a molecule gains one or more electrons, scientists call it a reduction; when it loses electrons, they say it is oxidized. These redox reactions, the researchers found, oscillate on a 24-hour cycle in the brain clock, and literally open and close channels of communication in brain cells.

They report their findings in the journal Science, which also wrote a Perspective on the research. “The language of the brain is electrical; it determines what kind of signals one part of the brain sends to the other cells in its tissue, as well as the other parts of the brain nearby,” said University of Illinois cell and developmental biology professor Martha Gillette, who led the study. “The fundamental discovery here is that there is an intrinsic oscillation in metabolism in the clock region of the brain that takes place without external intervention. And this change in metabolism determines the excitable state of that part of the brain.”

SIDEBAR: Want to Know More?
The new findings alter basic assumptions about how the brain works, Gillette said.

“Basically, the idea has always been that metabolism is serving brain function. What we’re showing is metabolism is part of brain function,” she said. “Our study implies that changes in cellular metabolic state could be a cause, rather than a result, of neuronal activity.”

The study team also included graduate student Yanxun Yu, postdoctoral researcher Gubbi Govindaiah, graduate student Xiaoying Ye, graduate student Liana Artinian, electrical and computer engineering professor Todd Coleman, chemistry professor Jonathan Sweedler and pharmacology professor Charles Cox. Gillette, Govindaiah, Ye, Sweedler and Cox also are affiliates of the Beckman Institute for Advanced Science and Technology at Illinois.

Editor’s notes: To reach Martha Gillette, call 217-244-1355;
email mgillett@illinois.edu.
The paper, “Circadian Rhythm of Redox State Regulates Excitability in Suprachiasmatic Nucleus Neurons,” is available online:

http://www.sciencemag.org/content/337/6096/839.full

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>