Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metabolic defects in mice corrected with transplanted embryonic neurons

25.11.2011
Researchers take a step toward neuronal replacement therapy

A new study has revealed that immature neurons taken from healthy mouse embryos can repair damaged brain circuitry and partially normalize metabolism when transplanted into adult mice that have grown morbidly obese due to a genetic deficiency. This proof-of-principle discovery represents one step down a long road toward neuronal replacement therapy, which researchers hope might one day be used to repair brains that have been injured by trauma or disease.

Artur Czupryn and colleagues took the immature neurons from the hypothalamus of wild-type mouse embryos and transplanted them into the hypothalamus of adult mice lacking a receptor for the hormone, leptin, which is known to regulate body weight. The researchers observed that the donor neurons were able to differentiate into four distinct neuronal types that then formed functional connections in the brains of the obese mice.

Their study appears in the 25 November 2011 issue of the journal Science, which is published by AAAS, the nonprofit science society.

"We chose this problem not because, even for a moment, we would pursue the idea of neuron transplantation for the treatment of obesity," explained Jeffrey Macklis from Harvard University, a corresponding author of the report. "What we did was take this very complicated circuitry in the hypothalamus that has a very clear, measurable outcome—not only obesity in the mice, but changes in their serum glucose (like diabetic human beings have), changes in their insulin levels and changes in their fat vs. lean body weights—and we used that complex circuitry as a test case for whether precisely selected and controlled neuron transplants could really rewire the brain."

The transplanted neurons did apparently restore leptin signaling in the brains of the obese mice because the rodents slimmed down and their metabolism began returning to normal levels, according to Czupryn and his colleagues.

"What we found is that these neurons not only turned into the right kinds of cells, but that they sent signals to the recipients' brain and received signals from the recipients' brain," said Macklis.

Although the researchers say that neuronal replacement is certainly not a practical approach to treating obesity, their study nonetheless provides evidence that the transplantation of donor neurons at the appropriate stage of development can promote functional recovery of a brain region that controls a complex phenotype.

This report by Czupryn et al. was funded by the National Institutes of Health, the Jane and Lee Seidman Fund for Central Nervous System Research, the Emily and Robert Pearlstein Fund for Nervous System Repair, the Picower Foundation, the National Institute of Neurological Disorders and Stroke (NINDS), the Nancy Lurie Marks Family Foundation, the Polish Ministry of Science and Higher Education and the Foundation for Polish Science.

The American Association for the Advancement of Science (AAAS) is the world’s largest general scientific society, and publisher of the journal, Science (www.sciencemag.org) as well as Science Translational Medicine (www.sciencetranslationalmedicine.org) and Science Signaling (www.sciencesignaling.org). AAAS was founded in 1848, and includes some 262 affiliated societies and academies of science, serving 10 million individuals. Science has the largest paid circulation of any peer-reviewed general science journal in the world, with an estimated total readership of 1 million. The non-profit AAAS (www.aaas.org) is open to all and fulfills its mission to “advance science and serve society” through initiatives in science policy; international programs; science education; and more. For the latest research news, log onto EurekAlert!, www.eurekalert.org, the premier science-news Web site, a service of AAAS.

Natasha Pinol | EurekAlert!
Further information:
http://www.aaas.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>