Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metabolic defects in mice corrected with transplanted embryonic neurons

25.11.2011
Researchers take a step toward neuronal replacement therapy

A new study has revealed that immature neurons taken from healthy mouse embryos can repair damaged brain circuitry and partially normalize metabolism when transplanted into adult mice that have grown morbidly obese due to a genetic deficiency. This proof-of-principle discovery represents one step down a long road toward neuronal replacement therapy, which researchers hope might one day be used to repair brains that have been injured by trauma or disease.

Artur Czupryn and colleagues took the immature neurons from the hypothalamus of wild-type mouse embryos and transplanted them into the hypothalamus of adult mice lacking a receptor for the hormone, leptin, which is known to regulate body weight. The researchers observed that the donor neurons were able to differentiate into four distinct neuronal types that then formed functional connections in the brains of the obese mice.

Their study appears in the 25 November 2011 issue of the journal Science, which is published by AAAS, the nonprofit science society.

"We chose this problem not because, even for a moment, we would pursue the idea of neuron transplantation for the treatment of obesity," explained Jeffrey Macklis from Harvard University, a corresponding author of the report. "What we did was take this very complicated circuitry in the hypothalamus that has a very clear, measurable outcome—not only obesity in the mice, but changes in their serum glucose (like diabetic human beings have), changes in their insulin levels and changes in their fat vs. lean body weights—and we used that complex circuitry as a test case for whether precisely selected and controlled neuron transplants could really rewire the brain."

The transplanted neurons did apparently restore leptin signaling in the brains of the obese mice because the rodents slimmed down and their metabolism began returning to normal levels, according to Czupryn and his colleagues.

"What we found is that these neurons not only turned into the right kinds of cells, but that they sent signals to the recipients' brain and received signals from the recipients' brain," said Macklis.

Although the researchers say that neuronal replacement is certainly not a practical approach to treating obesity, their study nonetheless provides evidence that the transplantation of donor neurons at the appropriate stage of development can promote functional recovery of a brain region that controls a complex phenotype.

This report by Czupryn et al. was funded by the National Institutes of Health, the Jane and Lee Seidman Fund for Central Nervous System Research, the Emily and Robert Pearlstein Fund for Nervous System Repair, the Picower Foundation, the National Institute of Neurological Disorders and Stroke (NINDS), the Nancy Lurie Marks Family Foundation, the Polish Ministry of Science and Higher Education and the Foundation for Polish Science.

The American Association for the Advancement of Science (AAAS) is the world’s largest general scientific society, and publisher of the journal, Science (www.sciencemag.org) as well as Science Translational Medicine (www.sciencetranslationalmedicine.org) and Science Signaling (www.sciencesignaling.org). AAAS was founded in 1848, and includes some 262 affiliated societies and academies of science, serving 10 million individuals. Science has the largest paid circulation of any peer-reviewed general science journal in the world, with an estimated total readership of 1 million. The non-profit AAAS (www.aaas.org) is open to all and fulfills its mission to “advance science and serve society” through initiatives in science policy; international programs; science education; and more. For the latest research news, log onto EurekAlert!, www.eurekalert.org, the premier science-news Web site, a service of AAAS.

Natasha Pinol | EurekAlert!
Further information:
http://www.aaas.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>