Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MERS-CoV treatment effective in monkeys, NIH study finds

09.09.2013
WHAT:
National Institutes of Health (NIH) scientists report that a combination of two licensed antiviral drugs reduces virus replication and improves clinical outcome in a recently developed monkey model of Middle East respiratory syndrome coronavirus (MERS-CoV) infection.

Their study, which appears as a letter in the Sept. 8 edition of Nature Medicine, expands on work published in April showing that a combination of ribavirin and interferon-alpha 2b stops MERS-CoV from replicating in cell culture. Both antivirals are routinely used together to treat viral diseases such as hepatitis C.

In the latest study, investigators at NIH's National Institute of Allergy and Infectious Diseases (NIAID) infected six rhesus macaques with MERS-CoV and, eight hours later, treated half of them with the two-drug regimen. Compared to the untreated animals, the treatment group showed no breathing difficulties and only minimal X-ray evidence of pneumonia. The treated animals also had lower amounts of virus and less severe tissue damage in the lungs.

As of Aug. 30, 2013, the World Health Organization has reported 108 human cases of MERS-CoV infection, including 50 deaths. Given the current lack of treatment options, the authors of this study conclude that combined ribavirin and interferon-alpha 2b therapy should be considered as an early intervention.

ARTICLES:

Falzarano et al. Interferon-a2b and ribavirin treatment improves outcome in MERS-CoV-infected rhesus macaques. Nature Medicine DOI: 10.1038/nm.3362 (2013).

Falzarano et al. Inhibition of novel human coronavirus-EMC replication by a combination of interferon-alpha2b and ribavirin. Scientific Reports DOI: 10.1038/srep01686 (2013).

Munster et al. Novel human coronavirus causes pneumonia in a macaque model resembling human disease. New England Journal of Medicine DOI: 10.1056/NEJMc1215691 (2013).

WHO:

Heinz Feldmann, M.D., Ph.D., chief of the Laboratory of Virology at NIAID's Rocky Mountain Laboratories (RML), is an expert on emerging viruses and investigated the 2003 SARS coronavirus outbreak.

Vincent Munster, Ph.D., chief of the Virus Ecology Unit in NIAID's Laboratory of Virology, is an expert on emerging viruses and is leading the RML team investigating the ecology and molecular biology of the new coronavirus.

CONTACT:

To schedule interviews, please contact Ken Pekoc, (301) 402-1663, kpekoc@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH...Turning Discovery Into Health®

Ken Pekoc | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>