Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Men and Women Process Emotions Differently

21.01.2015

Women rate emotional images as more emotionally stimulating than men do and are more likely to remember them. However, there are no gender-related differences in emotional appraisal as far as neutral images are concerned. These were the findings of a large-scale study by a research team at the University of Basel that focused on determining the gender-dependent relationship between emotions, memory performance and brain activity. The results will be published in the latest issue of the Journal of Neuroscience.

It is known that women often consider emotional events to be more emotionally stimulating than men do. Earlier studies have shown that emotions influence our memory: the more emotional a situation is, the more likely we are to remember it. This raises the question as to whether women often outperform men in memory tests because of the way they process emotions. A research team from the University of Basel's “Molecular and Cognitive Neurosciences” Transfaculty Research Platform attempted to find out.


Brain activity: red and yellow indicates the more active areas of the brain when negative emotional images are rated as highly stimulating. Green indicates the areas that become more active in women

MCN, University of Basel

With the help of 3,398 test subjects from four sub-trials, the researchers were able to demonstrate that females rated emotional image content – especially negative content – as more emotionally stimulating than their male counterparts did. In the case of neutral images, however, there were no gender-related differences in emotional appraisal.

In a subsequent memory test, female participants could freely recall significantly more images than the male participants. Surprisingly though, women had a particular advantage over men when recalling positive images. “This would suggest that gender-dependent differences in emotional processing and memory are due to different mechanisms,” says study leader Dr Annette Milnik.

Increased brain activity

Using fMRI data from 696 test subjects, the researchers were also able to show that stronger appraisal of negative emotional image content by the female participants is linked to increased brain activity in motoric regions. “This result would support the common belief that women are more emotionally expressive than men,” explained Dr Klara Spalek, lead author of the study.

The findings also help to provide a better understanding of gender-specific differences in information processing. This knowledge is important, because many neuropsychiatric illnesses also exhibit gender-related differences. The study is part of a research project led by professors Dominique de Quervain and Andreas Papassotiropoulos at the University of Basel, which aims to increase the understanding of neuronal and molecular mechanisms of human memory and thereby facilitate the development of new treatments.

Original source
Klara Spalek, Matthias Fastenrath, Sandra Ackermann, Bianca Auschra, XDavid Coynel, Julia Frey, Leo Gschwind, Francina Hartmann, Nadine van der Maarel, Andreas Papassotiropoulos, Dominique de Quervain and Annette Milnik
Sex-Dependent Dissociation between Emotional Appraisal and Memory: A Large-Scale Behavioral and fMRI Study
Journal of Neuroscience (2014) | doi: 10.1523/jneurosci.2384-14.2015

Olivia Poisson | Universität Basel
Further information:
http://www.unibas.ch

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>