Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When memory-related region of brain is damaged, other areas compensate

03.08.2010
UCLA research has implications for recovery from brain injuries

Many neuroscientists believe the loss of the brain region known as the amygdala would result in the brain's inability to form new memories with emotional content. New UCLA research indicates this is not so and suggests that when one brain region is damaged, other regions can compensate.

The research appears this week in the early online edition of the journal Proceedings of the National Academy of Sciences (PNAS).

"Our findings show that when the amygdala is not available, another brain region called the bed nuclei can compensate for the loss of the amygdala," said the study's senior author, Michael Fanselow, a UCLA professor of psychology and a member of the UCLA Brain Research Institute.

"The bed nuclei are much slower at learning, and form memories only when the amygdala is not learning," he said. "However, when you do not have an amygdala, if you have an emotional experience, it is like neural plasticity (the memory-forming ability of brain cells) and the bed nuclei spring into action. Normally, it is as if the amygdala says, 'I'm doing my job, so you shouldn't learn.' With the amygdala gone, the bed nuclei do not receive that signal and are freed to learn."

The amygdala is believed to be critical for learning about and storing the emotional aspects of experience, Fanselow said, and it also serves as an alarm to activate a cascade of biological systems to protect the body in times of danger. The bed nuclei are a set of forebrain gray matter surrounding the stria terminalis; neurons here receive information from the prefrontal cortex and hippocampus and communicate with several lower brain regions that control stress responses and defensive behaviors.

"Our results suggest some optimism that when a particular brain region that is thought to be essential for a function is lost, other brain regions suddenly are freed to take on the task," Fanselow said. "If we can find ways of promoting this compensation, then we may be in a better position to help patients who have lost memory function due to brain damage, such as those who have had a stroke or have Alzheimer's disease.

"Perhaps this research can eventually lead to new drugs and teaching regimens that facilitate plasticity in the regions that have the potential to compensate for the damaged areas," he said.

While the current study shows this relationship for emotional learning, additional research in Fanselow's laboratory is beginning to suggest this is a general property of memory.

Fanselow's PNAS study was federally funded by the National Institute of Mental Health.

Co-authors include lead author Andrew Poulos, a research scientist in Fanselow's laboratory; Ravikumar Ponnusamy, also a research scientist in Fanselow's laboratory; and Hong-Wei Dong, UCLA assistant adjunct professor of neurology and a member of UCLA's Laboratory of Neuro Imaging.

For more information about Fanselow's research, please visit http://fanselowlab.psych.ucla.edu/Main/Home.html.

UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer more than 323 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Five alumni and five faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom or follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>