Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memory and Alzheimer's: Towards a better comprehension of the dynamic mechanisms

01.09.2014

Research by Dr. Sylvain Williams shows that the flow of activity in the hippocampus, a brain region essential for memory, is actually bidirectional, rather than just unidirectional

A study just published in the prestigious Nature Neuroscience journal by, Sylvain Williams, PhD, and his team, of the Research Centre of the Douglas Mental Health University Institute and McGill University, opens the door towards better understanding of the neural circuitry and dynamic mechanisms controlling memory as well of the role of an essential element of the hippocampus – a sub-region named the subiculum.

In 2009, they developed a unique approach – namely, the in vitro preparation of a hippocampal formation. Now, the research team of Dr. Williams has succeeded in demonstrating in mice that, contrary to what has been thought to be the case for a hundred years, the flow of activity linked to memory in the hippocampus is not unidirectional and that the subiculum is not simply the exit point of this flow.

At the heart of memory

Memories form the very core of our identity. Despite this, the creation and retrieval of memories are phenomena that are not yet well understood. The neural circuitry underlying learning and memory are studied primarily because of their fundamental role in memory and diseases affecting it, such as Alzheimer's. The work of Dr. Williams and his team in the last few years has been concerned with understanding the dynamics of this circuitry. While we can say that the processes of memory encoding and retrieval require the activation of hundreds of thousands of neurons in the hippocampus working together synchronously, we still know very little about the circuits – or "routes" – underlying these processes.

Understanding how neurons of the hippocampus behave will give powerful insights into the anomalies in neural circuitry involved in Alzheimer's disease and schizophrenia and will lead to more targeted interventions.

"It is only by identifying these circuits as well as their dynamic within the hippocampus that we will understand the mechanisms responsible for memory," says Dr. Williams. "Moreover, a better comprehension of the intricate dynamics of these circuits could be used to identify very early changes indicating the development, or future development, of Alzheimer's disease. Indeed, we have recent results that show that, in mouse models of Alzheimer's, these small alterations can appear long before memory loss."

This recent research was able to be undertaken thanks to optogenetics, a revolutionary technique which offers the unique capability to manipulate specific groups of neurons with light to better understand their role in neural circuits and brain rhythms.

The complete article (Reversal of theta rhythm flow through intact hippocampal circuits) is published on August 31in Nature Neuroscience.

###

For other information and interviews:

Florence Meney
Media relations
Communications and Public Affairs
Douglas Mental Health University Institute
Dobell Pavilion, office B-2122
6875 LaSalle Blvd.
Montréal (Québec) H4H 1R3
Tel: 514 761-6131, ext. 2769
Cell : 514-835-3236
florence.meney@douglas.mcgill.ca

About the Douglas Institute

The Douglas is a world-class institute affiliated with McGill University and the World Health Organization. It treats people suffering from mental illness and offers them both hope and healing. Its teams of specialists and researchers are constantly increasing scientific knowledge, integrating this knowledge into patient care, and sharing it with the community in order to educate the public and eliminate prejudices surrounding mental health.

Florence Meney | Eurek Alert!
Further information:
http://www.douglas.qc.ca/?locale=en

Further reports about: Alzheimer's Health McGill Mental Neuroscience circuitry mechanisms neural processes role

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>