Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memory's Master Switch

30.07.2010
TAU discovers the molecular power behind memory

Neuroscientists have long wondered how individual connections between brain cells remain diverse and "fit" enough for storing new memories. Reported in the prestigious science journal Neuron, a new study led by Dr. Inna Slutsky of the Sackler School of Medicine at Tel Aviv University describes what makes some memories stick.

The key is GABA (ã-Aminobutyric acid), a natural molecule that occurs in the brain, which could be the main factor in regulating how many new memories we can generate, the new study has found. The understanding of these mechanisms might lead to the development of new memory enhancers and new treatments for neurodegenerative diseases such as Alzheimer's.

Memories, Dr. Slutsky says, are stored in synaptic connections between neurons in our brain. In the past, other teams, including her own, have demonstrated that the strength of individual synapses is highly variable, even at the single neuron level. This variability ultimately determines if and how new memories are stored, and the key to this variability is GABA, a naturally-occurring chemical found in the brain.

Tight connections and lone rangers

Dr. Slutsky's graduate student Tal Laviv and postdoctoral fellow Inbal Riven, the lead authors in the study, applied advanced nanotechnology methods in optical imaging to track how proteins engineered by Prof. Paul Slesinger and his team at The Salk Institute interact with GABA at the single-synapse level.

In the hippocampus, one of the main areas of the brain involved in learning and memory, the strength of neuronal connections is known to be highly variable. Some neurons are tightly connected to others, while some appear to be "lone rangers."

The new paper, which examines individual synapses in the hippocampus, demonstrates that this process is regulated by GABA, the main inhibitory neurotransmitter in our brain. "We determined that variations in the local level of GABA in the vicinity of individual synapses are responsible for the differences or 'heterogeneity' of synaptic strength. And this heterogeneity may facilitate the formation of new memories," Dr. Slutsky explains.

Looking at the brain at rest

While looking at the brain in its basal state — when the activity was "at rest" before attempting to memorize a list of items or after a memory had been stored — Dr. Slutsky's team could actually "see" where synapses differ at different dendritic branches in the neuronal network. Those branches of neurons close to a cell body displayed a larger number of weak synapses, while the most distant branches were composed of a smaller number of strong synapses.

"Why the difference?" they asked. GABA was the answer. Higher concentrations of GABA near a synapse induced a stronger activation of its receptors, weakening basal synapse strength. As a result, GABA makes this synapse more liable to the formation of new memories, the researchers propose.

Dr. Slutsky, who previously discovered a basal-state regulator molecule, says that the research may also have implications for treating diseases of the mind. "We found that amyloid-beta, a well-known hallmark of Alzheimer's disease, regulates basal synapse strength in an opposite way to GABA," she notes, suggesting that an increase in the basal activity of synapses may initiate memory decline in Alzheimer's and other neurodegenerative disorders.

Experiments in the study were done using neuronal cultures and brain slices of rats subjected to molecular biology, optical imaging and electrophysiological techniques. The study also constituted a technical achievement, since it used advanced imaging techniques such as fluorescence resonance energy transfer (FRET) spectroscopy that looked at protein-to-protein interactions in the brain at the 10 nanometer scale. In the past, such fine resolution was impossible — brain scientists could only investigate interactions at the level of entire tissues, not between molecules at individual synapses.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>