Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memories Influence The Decision in Choosing Certain Foods

21.05.2015

The better we remember something, the more likely it is that we will decide in favor of it – even if the offering is less attractive than the alternative. In a study regarding the choice of various foods, scientists of the Universitätsklinikum Hamburg-Eppendorf (UKE) and the University of Basle have documented how memory influences decisions. Utilizing brain scans, the scientists were able to show that this influence is based on increased communication between the involved areas of the brain. The results of their study have now been published in the scientific journal, Neuron.

“Many of our daily decisions, such as the selection of a restaurant for a meal, are based on the recollection of relevant information from our memory. Until recently, however, the neuronal and cognitive mechanisms of such decisions had hardly been researched,” explains Prof. Dr. Christian Büchel, the director of the Institute for Systemic Neurosciences at the UKE.

It is known that the hippocampus, a classic “memory region,” and the ventromedial prefrontal cortex in the frontal lobes, a “decision-making region,” are involved in these brain processes.

In the study, thirty young, and hungry test participants had to solve a task in which they first had to rate 48 snacks – such as potato chips and chocolate bars, salty snacks and chewing gum –based on their preferences. Afterwards, they were placed in a magnetic resonance scanner and had to choose repeatedly between two food offerings.

The snacks were presented to them on a computer monitor in conjunction with certain locations. However, during the decision-making process they were only shown the locations, so that the test participants had to remember the associated snacks.

The result showed that the test participants tended to prefer snacks that they could remember better. What’s more: snacks that were better remembered were chosen even if they were comparatively unattractive, i.e. when the test participants initially gave them a low rating.

The only snacks not chosen at all were those that had been strongly rejected by the respective test taker. In the comparison group, which was also comprised of 30 test participants, snacks were shown directly as an image – here, the initial rating usually matched with their subsequent choice.

The research group examined the neuronal mechanisms of memory-based decisions by utilizing functional magnetic resonance imaging (fMRI). They developed a mathematical model that illustrated the decision-making process, taking into consideration the influence of the memory.

This allowed the scientists to determine the strength of the memory-based activation during storage in the hippocampus. An analysis of the activation during the decisions showed that an increased communication takes place between the hippocampus and the ventromedial prefrontal cortex.

“Our research constitutes a bridge between two central fields of research in psychology, the research of memory, and decision-making processes,” explains the initial author of the study, Dr. Sebastian Gluth, formerly of the Institute for Systemic Neurosciences at the UKE, now of the faculty for Psychology at the University of Basle.

Furthermore, the combination of mathematical modeling and brain scans provides an accurate understanding of which areas of the brain are involved in which psychological sub-processes and how the various areas interact. The study was developed in cooperation with Dr. Tobias Sommer, and Prof. Dr. Christian Büchel, both also working at the Institute for Systemic Neurosciences at the UKE, and Prof. Jörg Rieskamp, of the faculty for Psychology at the University of Basle.

Literature:
Sebastian Gluth, Tobias Sommer, Jörg Rieskamp, and Christian Büchel Effective connectivity between hippocampus and ventromedial prefrontal cortex controls preferential choices from memory, Neuron 2015, epub ahead of print. DOI: http://dx.doi.org/10.1016/j.neuron.2015.04.023

Contact:
Prof. Dr. Christian Büchel
Institute for Systemic Neurosciences
Universitätsklinikum Hamburg-Eppendorf
Martinistr. 52
20246 Hamburg
Telephone: (040) 7410-54726
E-Mail: buechel@uke.de

Saskia Lemm | idw - Informationsdienst Wissenschaft
Further information:
http://www.uke.de

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>