Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memories Influence The Decision in Choosing Certain Foods

21.05.2015

The better we remember something, the more likely it is that we will decide in favor of it – even if the offering is less attractive than the alternative. In a study regarding the choice of various foods, scientists of the Universitätsklinikum Hamburg-Eppendorf (UKE) and the University of Basle have documented how memory influences decisions. Utilizing brain scans, the scientists were able to show that this influence is based on increased communication between the involved areas of the brain. The results of their study have now been published in the scientific journal, Neuron.

“Many of our daily decisions, such as the selection of a restaurant for a meal, are based on the recollection of relevant information from our memory. Until recently, however, the neuronal and cognitive mechanisms of such decisions had hardly been researched,” explains Prof. Dr. Christian Büchel, the director of the Institute for Systemic Neurosciences at the UKE.

It is known that the hippocampus, a classic “memory region,” and the ventromedial prefrontal cortex in the frontal lobes, a “decision-making region,” are involved in these brain processes.

In the study, thirty young, and hungry test participants had to solve a task in which they first had to rate 48 snacks – such as potato chips and chocolate bars, salty snacks and chewing gum –based on their preferences. Afterwards, they were placed in a magnetic resonance scanner and had to choose repeatedly between two food offerings.

The snacks were presented to them on a computer monitor in conjunction with certain locations. However, during the decision-making process they were only shown the locations, so that the test participants had to remember the associated snacks.

The result showed that the test participants tended to prefer snacks that they could remember better. What’s more: snacks that were better remembered were chosen even if they were comparatively unattractive, i.e. when the test participants initially gave them a low rating.

The only snacks not chosen at all were those that had been strongly rejected by the respective test taker. In the comparison group, which was also comprised of 30 test participants, snacks were shown directly as an image – here, the initial rating usually matched with their subsequent choice.

The research group examined the neuronal mechanisms of memory-based decisions by utilizing functional magnetic resonance imaging (fMRI). They developed a mathematical model that illustrated the decision-making process, taking into consideration the influence of the memory.

This allowed the scientists to determine the strength of the memory-based activation during storage in the hippocampus. An analysis of the activation during the decisions showed that an increased communication takes place between the hippocampus and the ventromedial prefrontal cortex.

“Our research constitutes a bridge between two central fields of research in psychology, the research of memory, and decision-making processes,” explains the initial author of the study, Dr. Sebastian Gluth, formerly of the Institute for Systemic Neurosciences at the UKE, now of the faculty for Psychology at the University of Basle.

Furthermore, the combination of mathematical modeling and brain scans provides an accurate understanding of which areas of the brain are involved in which psychological sub-processes and how the various areas interact. The study was developed in cooperation with Dr. Tobias Sommer, and Prof. Dr. Christian Büchel, both also working at the Institute for Systemic Neurosciences at the UKE, and Prof. Jörg Rieskamp, of the faculty for Psychology at the University of Basle.

Literature:
Sebastian Gluth, Tobias Sommer, Jörg Rieskamp, and Christian Büchel Effective connectivity between hippocampus and ventromedial prefrontal cortex controls preferential choices from memory, Neuron 2015, epub ahead of print. DOI: http://dx.doi.org/10.1016/j.neuron.2015.04.023

Contact:
Prof. Dr. Christian Büchel
Institute for Systemic Neurosciences
Universitätsklinikum Hamburg-Eppendorf
Martinistr. 52
20246 Hamburg
Telephone: (040) 7410-54726
E-Mail: buechel@uke.de

Saskia Lemm | idw - Informationsdienst Wissenschaft
Further information:
http://www.uke.de

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>