Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism for stress-induced epigenetic inheritance uncovered in new study

24.06.2011
Researchers at RIKEN have uncovered a mechanism by which the effects of stress in the fly species Drosophila are inherited epigenetically over many generations through changes to the structure of chromatin, the material that makes up the cell nucleus.

Published in the journal Cell, the results highlight the role of the transcription factor dATF-2 in chromatin assembly, marking a major advance in our understanding of non-Mendelian inheritance.

Recent years have seen growing interest in the phenomenon of epigenetic inheritance: the idea that our genome, through epigenetic tags and other structural modifications, transmits more information than the sequence of letters encoded in its DNA base pairs alone. Stresses of various kinds have been shown to induce such epigenetic change, yet the underlying mechanisms involved remain unknown.

To clarify these mechanisms, the researchers investigated the activity of activation transcription factor-2 (ATF-2), a member of a family of transcription factors which regulate gene expression in response to changes in the cellular environment. Earlier research had suggested that in the absence of stress, ATF-2 plays a role in silencing certain genes through the formation of heterochromatin, a tightly-packed variety of chromatin whose state is epigenetically heritable. When the stress is turned on, ATF-2 changes its function and induces gene expression.

Studying mutations to the ATF-2 gene in Drosophila (dATF-2), the researchers observed a disruption to the heterochromatin structure and reduced methylation of histone proteins, the main component of chromatin. Further analysis revealed that heat shock and osmotic stress during early embryogenesis results in phosphorylation of dATF-2 and triggers its release from the heterochromatin.

Most interestingly, the researchers discovered that the disruption to heterochromatin caused by the release of dATF-2 was transmitted to the next generation of cells, without any change to their DNA sequences.

In the case of heat shock, sustained stress over multiple generations resulted in the altered chromatin state being inherited by subsequent generations as well. The findings thus provide the first example of multigenerational transmission of stress-induced epigenetic change, highlighting the role played by ATF-2 and opening promising new avenues for further study.

For more information, please contact:
Shunsuke Ishii
Molecular Genetics Laboratory
RIKEN Advanced Science Institute
Tel: +81-(0)29-836-9031
Fax: +81-(0)29-836-9030
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225
Fax: +81-(0)48-463-3687
Email: koho@riken.jp

Tomoko Ikawa | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: ATF-2 DNA DNA sequence Drosophila melanogaster mechanism transcription factor

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>