Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism for stress-induced epigenetic inheritance uncovered in new study

24.06.2011
Researchers at RIKEN have uncovered a mechanism by which the effects of stress in the fly species Drosophila are inherited epigenetically over many generations through changes to the structure of chromatin, the material that makes up the cell nucleus.

Published in the journal Cell, the results highlight the role of the transcription factor dATF-2 in chromatin assembly, marking a major advance in our understanding of non-Mendelian inheritance.

Recent years have seen growing interest in the phenomenon of epigenetic inheritance: the idea that our genome, through epigenetic tags and other structural modifications, transmits more information than the sequence of letters encoded in its DNA base pairs alone. Stresses of various kinds have been shown to induce such epigenetic change, yet the underlying mechanisms involved remain unknown.

To clarify these mechanisms, the researchers investigated the activity of activation transcription factor-2 (ATF-2), a member of a family of transcription factors which regulate gene expression in response to changes in the cellular environment. Earlier research had suggested that in the absence of stress, ATF-2 plays a role in silencing certain genes through the formation of heterochromatin, a tightly-packed variety of chromatin whose state is epigenetically heritable. When the stress is turned on, ATF-2 changes its function and induces gene expression.

Studying mutations to the ATF-2 gene in Drosophila (dATF-2), the researchers observed a disruption to the heterochromatin structure and reduced methylation of histone proteins, the main component of chromatin. Further analysis revealed that heat shock and osmotic stress during early embryogenesis results in phosphorylation of dATF-2 and triggers its release from the heterochromatin.

Most interestingly, the researchers discovered that the disruption to heterochromatin caused by the release of dATF-2 was transmitted to the next generation of cells, without any change to their DNA sequences.

In the case of heat shock, sustained stress over multiple generations resulted in the altered chromatin state being inherited by subsequent generations as well. The findings thus provide the first example of multigenerational transmission of stress-induced epigenetic change, highlighting the role played by ATF-2 and opening promising new avenues for further study.

For more information, please contact:
Shunsuke Ishii
Molecular Genetics Laboratory
RIKEN Advanced Science Institute
Tel: +81-(0)29-836-9031
Fax: +81-(0)29-836-9030
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225
Fax: +81-(0)48-463-3687
Email: koho@riken.jp

Tomoko Ikawa | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: ATF-2 DNA DNA sequence Drosophila melanogaster mechanism transcription factor

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>