Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Certain meat components may increase bladder cancer risk

02.08.2010
A new study suggests that consuming specific compounds in meat related to processing methods may be associated with an increased risk of developing bladder cancer. Published early online in CANCER, a peer-reviewed journal of the American Cancer Society, the findings may be relevant for understanding the role of dietary exposures in cancer risk.

Eating red and processed meats has been linked to an increased risk of developing several different types of cancer. Animal studies have identified a number of compounds in meat that might account for this association. These include heterocyclic amines, polycyclic aromatic hydrocarbons, and N-nitroso compounds. Nitrate and nitrite are added to processed meats and are known precursors to N-nitroso compounds.

Amanda J. Cross, PhD, of the National Cancer Institute in Rockville and colleagues conducted one of the first prospective studies – the NIH-AARP Diet and Health Study—to assess the relationship between intake of these meat-related compounds and the risk of developing bladder cancer. They used information gathered through questionnaires to assess the types of meat consumed as well as how meat was prepared and cooked to estimate the intake of these meat-related compounds.

The investigators had information from approximately 300,000 men and women aged 50 to 71 years from eight US states. At the start of the study (1995 to 1996), all participants completed lifestyle and dietary questionnaires about their usual consumption of foods and drinks. The participants were followed for up to eight years, during which time 854 people were diagnosed with bladder cancer.

... more about:
»Cancer »DIET »N-nitroso »NIH-AARP »health services

People whose diets had the highest amount of total dietary nitrite (from all sources and not just from meat), as well as those whose diets had the highest amount of nitrate plus nitrite from processed meats had a 28 percent to 29 percent increased risk of developing bladder cancer compared with those who consumed the lowest amount of these compounds. This association between nitrate/nitrite consumption and bladder cancer risk may explain why other studies have observed an association between processed meats and increased bladder cancer risk.

"Our findings highlight the importance of studying meat-related compounds to better understand the association between meat and cancer risk," said Dr. Cross. "Comprehensive epidemiologic data on meat-related exposures and bladder cancer are lacking; our findings should be followed up in other prospective studies," she added.

Article: "Meat and components of meat and the risk of bladder cancer in the NIH-AARP Diet and Health Study." Leah M. Ferrucci, Rashmi Sinha, Mary H. Ward, Barry I. Graubard, Albert R. Hollenbeck, Briseis A. Kilfoy, Arthur Schatzkin, Dominique S. Michaud, and Amanda J. Cross. CANCER; Published Online: August 2, 2010 (DOI: 10.1002/cncr.25463).

David Sampson | EurekAlert!
Further information:
http://www.cancer.org

Further reports about: Cancer DIET N-nitroso NIH-AARP health services

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>