Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring segments of genetic material may help predict and monitor recurrence after thyroid cancer

28.10.2013
A new analysis has found that the presence of short segments of genetic material (known as microRNA) within papillary thyroid cancer tumors suggests a likelihood of recurrence after patients undergo surgery.

The study, which is published early online in CANCER, a peer-reviewed journal of the American Cancer Society, also found that elevated blood levels of the genetic material after surgery may indicate a higher possibility of recurrence after thyroidectomy.

MicroRNAs are copies of very short segments of genetic material that modulate gene expression. Researchers have found that dysregulation of microRNAs may play a role in the development of cancer, and microRNA profiles or "signatures" may be used to classify different types of thyroid tumors.

By studying tumor tissue from patients with papillary thyroid cancer, the most common endocrine malignancy, PhD candidate James Lee*, MBBS, FRACS, of the Kolling Institute of Medical Research and University of Sydney in Australia, under supervision from Professor Stan Sidhu, and his colleagues found that high levels of two specific microRNAs (microRNA-222 and -146b) within tumors indicated that cancer was more likely to recur after patients' tumors were surgically removed.

"This kind of test may help doctors select which patients may need more aggressive additional treatment after surgery, or be monitored more closely after initial treatment," said Lee. "As most patients with papillary type thyroid cancer do very well with standard treatment, we are always working on ways to help us select the small group that do not fair so well so we can use our medical resources more efficiently and minimize interruptions to patients' lives."

Also, the same two microRNAs were present at high levels in the blood of thyroid cancer patients compared with healthy individuals, but after thyroid surgery, the blood levels in the patients fell to normal levels. "This suggests that we may be able to track the presence of papillary thyroid cancer by a microRNA blood test," said Lee.

Dr. Lee added that the current blood test for the detection of recurrent papillary thyroid cancer is not accurate in up to a quarter of patients either because of interference from the patients' antibodies or other cancer-related factors. "Therefore, an alternative blood test measuring microRNA levels would be a great complement to what is already available," he said. Blood levels of the microRNAs may not be a good initial diagnostic tool for papillary thyroid cancer, though, because study participants with multinodular goiter, which is a common non-cancer thyroid condition, also had elevated levels in their blood. Also, the specific threshold miRNA level at which additional treatment would be warranted remains to be clarified.

Follow-up studies are needed to see if blood levels of microRNA-222 and microRNA-146b actually do increase when cancer recurs. Also, the accuracy of both tests—performed on tumors and on blood samples—needs to be improved before the tests can become clinically useful.

*Dr. Lee is currently at the Alfred Hospital, Monash Partners Academic Health Science Center.

Amy Molnar | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>