Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


McMaster study unveils lifeline for 'antibiotic of last resort'

Researchers identify the specific mechanism that triggers resistance to vancomycin

A new study led by the scientific director of the Michael G. DeGroote Institute for Infectious Disease Research has uncovered for the first time how bacteria recognize and develop resistance to a powerful antibiotic used to treat superbug infections.

Gerry Wright, a professor in the Department of Biochemistry and Biomedical Sciences at McMaster University in collaboration with colleagues at the John Innes Centre in Norwich, and the University of Cambridge in the UK, have identified the specific mechanism that triggers resistance to vancomycin.

The discovery reveals new understanding about what is happening at the molecular level in vancomycin resistance. It also represents an essential first step in developing new antibiotics that can evade the sensing mechanism of bacteria and overcome resistance.

The research, funded in part by the Canadian Institutes of Health Research and the Canada Research Chairs program, will be published online in the high-impact journal Nature Chemical Biology on April 11, 2010.

"Vancomycin is the antibiotic of last resort and is only given when all other treatments fail," said Wright, who holds the Canada Research Chair in Molecular Studies of Antibiotics and an endowed research Chair in Infection and Anti-Infective Research.

"For years it was thought that resistance would be slow to emerge since vancomycin works in an unusual way. But with the widespread use of the drug to treat infections caused by the hospital superbug MRSA, it has become a serious clinical problem."

MRSA is the short-form for methicillin-resistant staphylococcus aureus, a bacterial infection that is highly resistant to some antibiotics. MRSA bacteria are responsible for a large percentage of hospital-acquired staph infections, but may also be acquired in the community.

Vancomycin is used to treat enterococcal infections that develop in patients following abdominal surgery. Enterococcal bacteria first developed resistance to vancomycin in 1986 and the first case of vancomycin-resistant MRSA (VMRSA) was reported in 2002.

For 20 years, scientists around the world have debated whether bacteria sense the drug itself to trigger resistance or whether they sense the impact it has on the cell wall of bacteria.

Most antibiotics work by inhibiting an enzyme but vancomycin binds to cell wall building blocks, causing a weakness in the structure of the cell wall so the cell bursts and dies.

Some scientists believed that bacteria detect the cell wall degradation to trigger resistance. Others argued that bacteria detect the presence of the drug directly.

Wright and his team studied the vancomycin-resistance mechanism in the harmless soil bacteria Streptomyces coelicolor.

The scientists showed that bacteria detect vancomycin itself. They also conducted preliminary experiments that suggest the same mechanism exists in disease causing bacteria.

"We have finally cracked the alarm system used by bacteria, and hopefully new antibiotics can be developed that don't set it off," said Mark Buttner, a study collaborator and senior scientist at the John Innes Centre.

Marc Ouellette, scientific director of the Institute of Infection and Immunity at the Canadian Institutes for Health Research (CIHR), said the research findings shed new light on the antibiotic resistance issue.

"Thousands of Canadians die every year from antibiotic-resistant infections," Ouellette said. "This issue has long been a priority of the CIHR and this exciting work expands our understanding of how bacteria develop resistance to antibiotics. It lays the groundwork for developing new therapies to prevent and treat antibiotic-resistant infections."

Additional research support was received from the Biotechnology and Biological Sciences Research Council of the UK, the Royal Society and the Medical Research Council (UK).

A photo of Dr. Wright can be downloaded at

For more information, please contact:

Gerry Wright, PhD, professor, Department of Biochemistry and Biomedical Sciences at McMaster University

(289) 439-0325 or

Susan Emigh, Director, Health Sciences Public Relations, McMaster University
905-518-3642 or
Veronica McGuire, Media Relations Coordinator, Faculty of Health Sciences, McMaster University

905-525-9140, ext. 22169,

Susan Emigh | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>