Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McGill-UBC project creates mouse grimace scale to help identify pain in humans and animals

10.05.2010
A new study by researchers from McGill University and the University of British Columbia shows that mice, like humans, express pain through facial expressions.

McGill Psychology Prof. Jeffrey Mogil, UBC Psychology Prof. Kenneth Craig and their respective teams have discovered that when subjected to moderate pain stimuli, mice showed discomfort through facial expressions in the same way humans do.

Their study, published online May 9 in the journal Nature Methods, also details the development of a Mouse Grimace Scale that could inform better treatments for humans and improve conditions for lab animals.

Because pain research relies heavily on rodent models, an accurate measurement of pain is paramount in understanding the most pervasive and important symptom of chronic pain, namely spontaneous pain, says Mogil.

"The Mouse Grimace Scale provides a measurement system that will both accelerate the development of new analgesics for humans, but also eliminate unnecessary suffering of laboratory mice in biomedical research," says Mogil. "There are also serious implications for the improvement of veterinary care more generally."

This is the first time researchers have successfully developed a scale to measure spontaneous responses in animals that resemble human responses to those same painful states.

Mogil, graduate student Dale Langford and colleagues in the Pain Genetics Lab at McGill analyzed images of mice before and during moderate pain stimuli – for example, the injection of dilute inflammatory substances, as are commonly used around the world for testing pain sensitivity in rodents. The level of pain studied could be comparable, researchers said, to a headache or the pain associated with an inflamed and swollen finger easily treated by common analgesics like Aspirin or Tylenol.

Mogil then sent the images to Craig's lab at UBC, where facial pain coding experts used them to develop the scale. Craig's team proposed that five facial features be scored: orbital tightening (eye closing), nose and cheek bulges and ear and whisker positions according to the severity of the stimulus. Craig's laboratory had previously established studying facial expression as the standard for assessing pain in human infants and others with verbal communication limitations. This work is an example of successful "bedside-to-bench" translation, where a technique known to be relevant in our species is adapted for use in laboratory experiments.

Continuing experiments in the lab will investigate whether the scale works equally well in other species, whether analgesic drugs given to mice after surgical procedures work well at their commonly prescribed doses, and whether mice can respond to the facial pain cues of other mice.

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca

Further reports about: Mouse UBC facial expression facial pain scale surgical procedure

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Innovative LED High Power Light Source for UV

22.06.2017 | Physics and Astronomy

Mathematical confirmation: Rewiring financial networks reduces systemic risk

22.06.2017 | Business and Finance

Spin liquids − back to the roots

22.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>