Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic Study Reveals Neighborhood Asthma Risks

07.05.2010
Those living near highway and railroad intersections more likely to develop asthma

Mayo Clinic researchers recently released study data showing children who lived near major highway or railroad intersections have higher diagnoses of asthma. The researchers used this study to show how neighborhood environment is a risk factor in understanding the development of pediatric asthma. The study appears in a recent addition of The Journal of Allergy and Clinical Immunology.

"Using nearest propensity score, children who lived in census tracts facing the intersection with major highways or railways had about 40 to 70 percent increased risk of developing childhood asthma," says Young Juhn, M.D., of Mayo Clinic's Department of Community Pediatric and Adolescent Medicine. "What this tells us is that clinicians need to be concerned about neighborhood environment beyond home environment to understand the individual asthma case."

The study was a retrospective, population-based birth cohort where researchers studied 3,970 people born between 1976 and 1979 in Rochester, Minn. Of the 1,947 subjects living in census tracts that faced intersections, 6.4 percent developed asthma, while 4.5 percent of those living in census tracts not facing intersections developed asthma. Dr. Juhn and his colleagues are currently conducting research that looks at the influence of neighborhood environment on other disease outcomes.

Other study authors include Rui Qin, Ph.D., Department of Health Sciences Research, Mayo Clinic; Sanghwa Urm, M.D., Ph.D, Department of Preventive Medicine, School of Medicine, Inje University, South Korea; Slavica Katusic, M.D., Department of Health Sciences Research, Mayo Clinic; and Delfino Vargas-Chanes, Ph.D., Center of Sociological Studies, El Colegio de Mexico.

About Mayo Clinic
Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,700 physicians, scientists and researchers, and 50,100 allied health staff work at Mayo Clinic, which has campuses in Rochester, Minn; Jacksonville, Fla; and Scottsdale/Phoenix, Ariz.; and community-based providers in more than 70 locations in southern Minnesota., western Wisconsin and northeast Iowa. These locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education, visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories.

Bryan Anderson | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>